Supramolecular Valves for Nanomotors

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 31 May 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Supramolecular Valves for Nanomotors

Motion can be controlled at the nanoscale in two ways: either by designing self-assembled nanodevices that mimic macroscopic objects, e.g., like space rockets, or by building devices that imitate biological systems with controlled motility. Such systems can move autonomously in the presence of fuel and can adapt to changes in their environment.


Yingfeng Tu, Southern Medical University, Guangzhou, China, Daniela A. Wilson, Radboud University, Nijmegen, The Netherlands, and colleagues have designed nanomotors whose motion can be controlled by host-guest interactions that open and close a "valve" on the motors. The devices were made by the self-assembly of amphiphilic polymers into small bowl-shaped vesicles with a narrow opening (pictured in blue). The vesicles contain an active platinum nanoparticle catalyst (pictured in grey). This catalyst promotes the decomposition of hydrogen peroxide to water and gaseous oxygen, which propels the nanomotors forward.


In order to regulate the access of the hydrogen peroxide fuel to this catalyst, trans-azobenzene derivatives were attached to the vesicle. β‐Cyclodextrin (β‐CD, pictured in yellow) can then form a complex with these azobenzenes and block the vesicle's opening. The azobenzenes change their conformation to the cis-form under blue-light irradiation. The β‐CDs cannot form complexes with this cis‐isomer and is detached from the vesicle. Hydrogen peroxide can then reach the catalyst and the nanomotor's movement speed increases.


In this way, a stimuli-responsive valve was implemented that can be used to control the motion of these polymeric vesicles. This light-responsive valve approach for motion control can endow soft self-assembled particles with desirable properties that might have applications in drug delivery and nanomedicine.


 

Article Views: 501

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH