Tracking Water Oxidation on Nickel and Nickel Iron Oxides

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 29 July 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Tracking Water Oxidation on Nickel and Nickel Iron Oxides

The oxygen evolution reaction (OER) is a key process in water splitting, which can be used to generate "green" hydrogen fuel. Nickel iron oxide is a benchmark catalyst for the OER in an alkaline medium. However, this catalyst is still poorly understood and the nature of its active site is debated.


Xile Hu and colleagues, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, have used in-situ Raman spectroscopy and oxygen isotope experiments to study the active sites in different Ni-based oxides during electrocatalytic water oxidation. Ultrathin layered double hydroxides (LDHs) consisting of either Ni, NiCo, or NiFe oxide were synthesized and used as defined models for the catalysts. They were prepared with different oxygen isotopes: the lattice oxygen atoms were either 16O or 18O. Raman spectroscopy was then used to monitor the evolution of Raman peaks corresponding to either lattice oxygen or a Ni superoxide (NiOO) intermediate.


The researchers found that for the pure Ni and the NiCo LDHs, lattice oxygen and NiOO are exchanged with oxygen from OH in the electrolyte solution during the OER. This means the lattice oxygen atoms participate in the reactions. These findings suggest that for iron-free Ni oxides, Ni sites in the bulk are the active sites and evolve oxygen via a NiOO precursor.


In contrast, no oxygen exchange takes place for NiFe and NiCoFe LDHs. When Fe is present, the catalytic activity is dramatically increased. The researchers attribute this rise in activity to highly reactive active sites on the catalyst surface, most likely based on Fe.


 

Article Views: 540

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH