Observing Isomerization in Metal-Organic Chains

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 19 December 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Observing Isomerization in Metal-Organic Chains

On‐surface synthesis of functional nanomaterials has great potential for creating atomically precise functional nanostructures with tailored electronic and magnetic properties. Using mechanical strain to steer chemical reactions creates new possibilities for the solution‐ or solid‐phase synthesis of functional molecules and materials. However, this strategy is usually not easy to apply in the bottom‐up, on‐surface synthesis of well‐defined nanostructures.

Jiong Lu and Jishan Wu, National University of Singapore, Pavel Jelínek, Czech Academy of Sciences, Prague, and Palacký University, Olomouc, both Czech Republic, and colleagues have discovered a strain-induced isomerization mechanism in 1D metal–organic chains (MOCs). A 1,5-dibromo-2,6-dimethylnaphthalene (DBDMN) precursor was used to fabricate 1D MOCs on a catalytically active Cu(111) surface. The resulting MOCs undergo skeletal rearrangements (pictured) after prolonged annealing at room temperature.

Non-contact atomic force microscopy (nc-AFM) imaging with a carbon-monoxide-functionalized tip was used to visualize the structural changes. The isomerization occurs through the activation of C–H bonds and a simultaneous rearrangement of the coordination bonds. The relief of strain in the MOCs is a driving force for their isomeric transformation. The researchers believe that such strain-induced structural rearrangements in 1D systems could be a new tool for the on-surface synthesis of functional materials.



Article Views: 999

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)published by Wiley-VCH