Biohybrid Photocatalyst for CO2 Reduction

  • Author: Angewandte Chemie International Edition
  • Published Date: 30 April 2020
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Biohybrid Photocatalyst for CO<sub>2</sub> Reduction

Photosynthetic biohybrid systems can take advantage of both the light-harvesting ability of semiconductors and the synthetic abilities of living cells. However, high-performance photosynthesis requires good solar energy utilization, hole/electron separation efficiency, and electron transfer between the semiconductor and biological cells, which are challenging to achieve.


Shu Wang, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Feng Li, Qingdao Agricultural University, China, and colleagues have developed a photosynthetic system that can reduce carbon dioxide to acetic acid. It consists of organic semiconductors coated onto the surface of the non-photosynthetic bacteria Moorella thermoacetica. The organic semiconductors the team used are the electron-transporting (n-type) perylene diimide (PDI, pictured below) and the hole-transporting (p-type) poly(fluorene-co-phenylene) (PFP, pictured below). They were added to the culture medium of the bacteria to coat their surface.


The semiconductors act as photosensitizers on the bacteria surface. On exposure to light, the bacteria harvests photoexcited electrons from the PFP/PDI layer, which then drive a metabolic pathway to synthesize acetic acid from CO2. Cysteine (Cys) is used as an electron donor in this process and dimerized to CySS (pictured below). The biohybrid has a solar-to-chemical conversion efficiency of approximately 1.6 %.

 


 

 

Article Views: 742

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH