Coordination Dynamics of Zinc Influence Enzymatic Activity

  • Author: ChemPhysChem
  • Published Date: 17 July 2020
  • Source / Publisher: ChemPhysChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Coordination Dynamics of Zinc Influence Enzymatic Activity

Related Societies

Human carbonic anhydrase (HCA) II is a very efficient enzyme. It has been studied extensively as a prototype in biophysics, biochemistry, inhibitor design, and medicinal chemistry. It has a high thermal stability and helps to maintain the pH balance in our body. HCA II catalyzes the reversible hydration of carbon dioxide and contains a stable, tetrahedrally coordinated catalytic zinc site (pictured).

Tanmoy K. Paul and Srabani Taraphder, Indian Institute of Technology, Kharagpur, have studied how changes in the coordination number of the zinc ion affect the rate-determining step in HCA II. This reaction step involves a proton transfer between a zinc-bound water and a histidine (His) residue in the enzyme. The team used molecular dynamics (MD) and transition path sampling simulations to study the effects of the zinc ion's coordination environment, starting from a high-resolution crystal structure.

The researchers found that in addition to the stable tetrahedral state, there is a less stable, pentacoordinated, trigonal bipyramidal state, in which an extra water molecule transiently binds to the tetracoordinated zinc ion at the active site of HCA II. The deprotonation of a zinc-bound water molecule preferentially takes place from this transient penta‐coordinated state of zinc. It then sets in motion an intramolecular proton transfer via other water molecules to the His‐64 sidechain, which points inward to the active site (pictured). The rare constant estimated on this basis matches the experimental value, which suggests that dynamic Zn coordination triggers the rate-determining proton-transfer step in HCA II.



Article Views: 996

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH