Mechanochemical Synthesis of N-Arylamides

  • Author: ChemPlusChem
  • Published Date: 26 August 2020
  • Source / Publisher: ChemPlusChem/Wiley-VCH
  • Copyright: Wiley-VCH GmbH
thumbnail image: Mechanochemical Synthesis of <i>N</i>-Arylamides

Related Societies

Amide groups are present in many pharmaceutical agents, agrochemicals, polymers, and natural products. The synthesis of aryl amides can be challenging when the amine reactants are poor nucleophiles. Many amidation approaches for this type of reaction, thus, require harsh reaction conditions, environmentally harmful solvents, high temperatures, and/or long reaction times. Developing "greener" processes with smaller solvent volumes, shorter reaction times, and reduced energy consumption would be useful.

Filipe Vilela, Heriot-Watt University, Edinburgh, UK, Gareth O. Lloyd, University of Lincoln, UK, and colleagues have developed two mechanochemical, solventless processes based on ball-milling for the synthesis of a variety of N-arylamides. The reactions achieve the N-amidation of O-protected hydroxamic acids using either aryl iodides or aryl boronic acids.

The variant using aryl iodides is mediated by stoichiometric amounts of copper(I) thiophene-2-carboxylate (CuTC) in the presence of N,N'‐dimethylethylenediamine (DMEDA) using liquid-assisted grinding with small amounts of ethanol. The variant with aryl boronic acids uses copper(I) acetate, tBuOK as a base, and no liquid-assisted grinding component. The team used custom milling jars, which were made using a commercial 3D printer, and mixing balls with different diameters to allow the efficient mixing of the reactants.

Both protocols proved to be highly efficient and provided access to N-arylamides. Overall, the team achieved the synthesis of aryl amide compounds from protected hydroxamic acids in high yields (>90 %), in a scalable manner (up to multigram quantities), and with reduced reaction times (20 min). According to the team, this solventless synthesis may encourage other researchers to explore the possibilities of mechanochemistry.



Article Views: 1560

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH