Electrochemical Nitrogen Reduction on Mo5N6

  • Author: ChemSusChem
  • Published Date: 29 June 2021
  • Copyright: Wiley-VCH GmbH
thumbnail image: Electrochemical Nitrogen Reduction on Mo<sub>5</sub>N<sub>6</sub>

Related Societies

Transforming molecular nitrogen to ammonia is a challenging but very important reaction. Transition metal nitride (TMN)-based materials, such as molybdenum nitride, are promising catalysts for the electrochemical nitrogen reduction reaction (eNRR). However, the mechanism of the reaction and the nature of the active site are not entirely clear yet, and tuning the activity of eNRR catalysts is challenging.


Tianwei He, Shuangpeng Wang, Hui Pan, University of Macau, Macao SAR, China, and colleagues have conducted a comprehensive study to investigate the reaction mechanisms of N2 fixation on molybdenum nitride using density functional theory (DFT) calculations. The activity and selectivity of eNRR on pristine (001) and (110) Mo5N6 surfaces, as well as on heteroatom-functionalized surfaces, were evaluated and compared.


The team found that the Mo and N atoms on the pristine Mo5N6 surfaces were both active for the eNRR, while following different mechanistic pathways. The catalytic performance of Mo5N6 for the eNRR could be boosted by specific anchored species, such as single transition-metal atoms, metal dimers, and metal heterodimers. Overall, the work provides insight into the underlying reaction mechanism of eNRR on Mo5N6 as well as strategies towards the rational design of efficient NRR electrocatalysts that could be extrapolated to other materials.


 

 

Article Views: 3352

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH