2011 Trends in Analytical Chemistry

2011 Trends in Analytical Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Analytical Chemistry 2011

B. Mizaikoff et al.

Electrochemical biosensors detect single molecules with nanopores; nanoparticles of distinct molecular polymers recognize proteins and nucleic acids; and nano-structures intensify the signals of Raman spectroscopy. Also the materials of columns for liquid chromatography became smaller: particle diameter lie below 3 µm, pore diameter in the range of 10 nm.

But nano is only one subject of research in analytical chemistry. This year’s trend report also introduces scanning probe methods and their combinations, powerful light sources and new methods in vibrational spectroscopy, alternatives to inductively coupled plasma and atomic absorption spectroscopy in routine analysis, as well as applications in chemical metrics.

► Full article (in German):

All 2011 trend reports on ChemViews

Authors

The analytical chemistry trend report 2011 had 12 authors, whose names can be found in the full article. Boris Mizaikoff, Department for Analytical and Bioanalytical Chemistry, University of Ulm, Germany, was the coordinator of the report.

Boris Mizaikoff

Boris Mizaikoff, born 1965, studied chemistry at the Technical University of Vienna, Austria, where he graduated in 1996. After his habilitation in 2000, he was from 2001–2007 professor of analytical chemistry at the Georgia Institute of Technology, Atlanta, USA. In 2007 he accepted an appointment to the Chair of Analytical and Bioanalytical Chemistry at the University of Ulm, Germany.

His research focuses on analytical methods for environmental, process, and bioanalysis. In particular, using infrared spectroscopy and sensors, the development of multifunctional measuring platforms, synthesis and application of synthetic molecular recognition materials, and the miniaturization and integration of analytical laboratories.

References

1) F. Gritti, G. Guiochon, J. Chromatogr. A 2012, 1228, 2– 19.
2) K. Hormann, T. Müllner, S. Bruns, A. Höltzel, U. Tallarek, J. Chromatogr. A 2012, 1222, 46–58.
3) P. Jandera, Anal. Chim. Acta, 2011, 692(1–2), 1–25.
4) B. Buszewski, S. Noga, Anal. Bioanal. Chem. 2012, 402, 231–247.
5) P. Tranchida et al., Advances in Chromatography, Boca Raton/ FL, USA, 2010, 48, 289–328.
6) P. Sandra, et al. , LC-GC Europe, 2010, 23(8), 396, 398, 400, 402–405.
7) A. Staub, D. Guillarme, J. Schappler, J.-L.Venthey, S. Rudaz, J. Pharmaceut. Biomed. Analysis 2011, 55(4), 810–822.
8) J. P. Kutter, J. Chromatogr. A, 2012, 1221, 72–82.
9) A. D’Ulivo, Spectrochim. Acta, Part B 2010, 65, 360.
10) J. O. Orlandini, J. N. v. Niessen, J. N. Schaper, J. H. Petersen, N. H. Bings, J. Anal. At. Spectrom. 2011, 26, 1781.
11) B. Gielniak, T. Fiedler, J. A. C. Broekaert, Spectrochim. Acta, Part B 2011, 66, 21.
12) M. A. Amberger, P. Barth, O. Förster, J. A. C. Broekaert, Microchim. Acta 2011, 172, 261.
13) J. C. Paz de Matos, L. F. Rodrigues, E. M. de Maraes Flores, V. Krivan, Spectrochim. Acta 2011, 66, 637.
14) C. Engelhard, S. J. Ray, W. Buscher, V. Hoffmann, V., G. M. Hieftje, J. Anal. At. Spectrom. 2010, 25, 1874.
15) K. P. Pfeuffer, J. T. Shelley, S. J. Ray, J. A. C. Broekaert, G. M. Hieftje, Pittcon 2010, Paper 485–5.
16) R. Pereiro, A. Solà-Vázquez, L. Lobo, J. Pisonero, N. Bordel, J. M. Costa, A. Sanz-Medel, Spectrochim. Acta, Part B 2011, 66, 399.
17) H. Amrania, A. P. McCrow, M. R. Matthews, S. G. Kazarian, M. K. Kuimovac, C. C. Phillips, Chem. Science 2011, 2, 107–111.
18) J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, R. Hillenbrand, ACS Nano 2011, 8, 6494–6499.
19) A. Dazzi, F. Glotin, R. Carminati, J. Appl. Phys. 2010, 107, 124519 1 –7.
20) C. Policar, J. B. Waern, M.-A. Plamont, S. Clede, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessieres, A. Dazzi, Angew. Chem. 2011, 123, 890–894. DOI: 10.1002/ange.201003161
21) C. Mayet, A. Dazzi, R. Prazeres, J.-M. Ortega, D. Jaillard, Analyst 2010, 135, 2540–2545.
22) M. Brandstetter, A. Genner, K. Anic, B. Lendl, Analyst 2010, 135, 3260–3265.
23) S. Luedeke, M. Pfeifer, P. Fischer, J. Am. Chem. Soc. 2011, 133, 5704–5707.
24) X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, B. Mizaikoff, Analyst 2012. DOI: 10.1039/c1an15787f
25) M. Schmitt, J. Popp, J. Raman Spectrosc. 2006, 37, 20–28.
26) K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267–297.
27) S. A. Maier, Plasmonics: fundamentals and applications, Springer, New York, 2007.
28) K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, Anal. Bioanal. Chem. 2008, 390, 113–124.
29) W. E. Smith, Chem. Soc. Rev. 2008, 37, 955–964.
30) D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Anal. Bioanal. Chem. 2012.
31) D. Y. Wu, J. F. Li, B. Ren, Z. Q. Tian, Chem. Soc. Rev. 2008, 37, 1025–1041.
32) R .J. C. Brown, M. J. T. Milton, J. Raman Spectrosc. 2008, 39, 1313–1326.
33) N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. Reculusa, D. M. Bassani, E. Gillies, F. Lagugné-Labarthet,
Langmuir 2008, 24, 11313–11321.
34) D. Cialla, K. Weber, R. Böhme, U. Hübner, H. Schneidewind, M. Zeisberger, R. Mattheis, R. Möller, J. Popp, Beilstein, J. Nanotechnol. 2011, 2, 501–508.
35) D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, J. K. Wang, Opt. Express 2011, 19, 4337–4345.
36) F. P. Zamborini, L. Bao, R. Dasari, Anal. Chem. 2012, 84, 541−576.
37) M. Frasconi, R. Tel-Vered, M. Riskin, I. Willner, Anal. Chem. 2010, 82, 2512–2519.
38) G. D. Huy, M. Zhang, P. Zuo, B. C. Ye, Analyst, 2011, 136, 3289–3294.
39) Q. Cao, Y. Xu, F. Liu, F. Svec, J. M. J. Fréchet, Anal. Chem. 2010, 82, 7416–7421.
40) Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62–108. DOI: 10.1002/ange.200802248
41) M. Harada, N. Tamura, M. Takenaka, J. Phys. Chem. C 2011, 115, 14081–14092.
42) Trends Anal. Chem. 2011, 30, 1–164; 415–568.
43) A. G. Howard, J. Environ. Monit. 2010, 12, 135–142.
44) H. Hagendorfer, R. Kaegi, J. Traber, S. F. L. Mertens, R. Scherrers, C. Ludwig, A. Ulrich, Anal. Chim. Acta 2011, 706, 367– 378.
45) J. Chao, J. Liu, S. Yu, Y. Feng, Z. Tan, R. Liu, Y. Yin, Anal. Chem. 2011, 83, 6875–6882.
47) R. Ludwig, W. Harreither, F. Tasca, L. Gorton, ChemPhysChem 2010, 11, 2674.
48) M. Li, R. Li, C. M. Li, N. Wu, Front Biosci. (Schol. Ed). 2011, 3, 1308.
49) S.J. Sadeghi, A. Fantuzzi, G. Gilardi, Biochim. Biophys. Acta 2011, 1814, 237.
50) A. Yarman, L. Peng, Y. Wu et al., Bioanal. Rev. 2011, 3, 67.
51) www.miptechnologies.com
52) U. Athikomrattanakul, N. Gajovic-Eichelmann, F. W. Scheller, Anal. Chem. 2011, 83, 7704.
53) B. Tse Sum Bui , K. Haupt, Anal. Bioanal. Chem. 2010, 398, 2337.
54) V. Suryanarayanan, C.-T. Wu, K.-C. Ho, Electroanal. 2010, 22, 1795.
55) M. Polreichova, Usman Latif, F. L. Dickert, Aust. J. Chem. 2011, 64, 1256.
56) T. Hianik, J. Wang, Electroanal. 2010, 21, 1223.
57) S. Schumacher, Lab Chip 2012, 12, 464.
58) www.illumina.com/services/genome_network.ilmn
59) J. Eid, A. Fehr, J. Grey et al., Science 2009, 323, 133–138.
60) www.nanoporetech.com
61) A. Banerjee, E. Mikhailova, S. Cheley, L.-Q. Gu, M. Montoya, Y. Nagaoka, E. Gouaux, H. Bayley, Proc. Natl. Acad. Sci. USA
2010, 107, 8165–8170.
62) S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. A. Golovchenko, Nature 2010, 467, 190–193. DOI: 10.1038/nature09379
63) H. Liu, J. He, J. Tang, H. Liu, P. Pang, Di Cao, P. Krstic, S. Joseph, S. Lindsay, C. Nuckolls, Science 2010, 327, 64–67.
64) R. Kawano, T. Osaki, H. Sasaki, M. Takinoue, S. Yoshizawa, S. Takeuchi, J. Am. Chem. Soc. 2011, 133, 8474–8477. DOI: 10.1021/ja2026085
65) Z. Nie, F. Deiss, X. Liu, O. Akbulut, G. M. Whitesides, Lab Chip 2010, 10.
66) Y. Xiang, Y. Lu, Nat. Chem. 2011, 3, 697–703.
67) M. Florea, W. M. Nau, Angew. Chem. 2011, 123, 9510–9514. DOI: 10.1002/ange.201104119
68) D.-S. Guo, V. D. Uzunova, X. Su, Y. Liu, W. M. Nau, Chem. Sci. 2011, 2, 1722–1734.
69) J. F. Young, H. D. Nguyen, L. Yang, J. Huskens, P. Jonkheijm, L. Brunsveld, ChemBioChem 2010, 11, 180–183.
70) S. S. Agasti, M. Liong, C. Tassa, H. J. Chung, S. Y. Shaw, H. Lee, R. Weissleder, Angew. Chem. 2012, 124, 450–454. DOI: 10.1002/ange.201105670
71) A. Hennig, A. Hoffmann, H. Borcherding, T. Thiele, U. Schedler, U. Resch-Genger, Chem. Commun. 2011, 47, 7842–7844.
72) R. de la Rica, R. M. Fratila, A. Szarpak, J. Huskens, A. H. Velders, Angew. Chem. 2011, 123, 5822–5825. DOI: 10.1002/ange.201008189
73) B. Gruber, S. Stadlbauer, A. Späth, S. Weiss, M. Kalinina, B. König, Angew. Chem. 2010, 122, 7280–7284. DOI: 10.1002/ange.201001101
74) J. Wu, A. Zawistowski, M. Ehrmann, T. Yi, C. Schmuck, J. Am. Chem. Soc. 2011, 133, 9720–9723. DOI: 10.1021/ja204013u
75) T. Takeuchi, J. Montenegro, A. Hennig, S. Matile, Chem. Sci. 2011, 2, 303–307.
76) D. Leung, S. O. Kang, E. V. Anslyn, Chem. Soc. Rev. 2012, 41, 448–479.
77) S. Rochat, K. Severin, J. Comb. Chem. 2010, 12, 595–599.
78) Z. Rodriguez-Docampo, E. Eugenieva-Ilieva, C. Reyheller, A. M. Belenguer, S. Kubik, S. Otto, Chem. Commun. 2011, 47, 9798–9800.
79) L. Chen, S. Xu, S.; J. Li, Chem. Soc. Rev. 2011, 40, 2922–2942.
80) M. Zayats, M. Kanwar, M. Ostermeier, P. C Searson, Macromolecules 2011, 44, 3966–3972.
81) J. L. Urraca, C. S. A. Aureliano, E. Schillinger, H. Esselmann, J. Wiltfang, B. Sellergren, J. Am. Chem. Soc. 2011, 133, 9220–9223. DOI: 10.1021/ja202908z
82) L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W. M. Abdel-Mageed, M. Jaspars, Nat. Chem. 2010, 2, 821–825.
83) P. Elsamadisi, Y.Wang, J. Velmurugan, M. V. Mirkin, Anal. Chem. 2011, 83, 671–673.
84) Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson, P. R. Unwin, A. J. Pollard, D. Roy, C. A. Clifford, H. Shiku, T. Matsue, D. Klenerman, Y. E. Korchev, Angew. Chem. 2011, 123, 9812–9816. DOI: 10.1002/ange.201102796
85) C.-C. Chen, Y. Zhou, L. A. Baker, ACS Nano, 2011, 5, 8404–8411.
86) J. Rheinlaender, N. A. Geisse, R. Proksch, T. E. Schaeffer, Langmuir 2011, 27, 697–704.
87) V. O. Nikolaev, A. Moshkov, A. R. Lyon, M. Miragoli, P. Novak, H. Paur, M. J. Lohse, Y. E. Korchev, S. E. Harding, J. Gorelik, Science 2010, 327, 1653–1657. DOI: 10.1126/science.1185988
88) D. J. Comstock, J. W. Elam, M. J. Pellin, M. C. Hersam, Anal. Chem. 2010, 82,1270–1276.
89) Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Murakami, H. Shiku, Y. E. Korchev, T. Matsue, J. Amer. Chem. Soc. 2010, 132, 10118–10126. DOI: 10.1021/ja1029478
90) C. A. Morris , C.-C. Chen, L. A. Baker, Analyst 2012.
91) S. E. Pust, M. Salomo, E. Oesterschulze, G. Wittstock, Nanotechnology, 2010, 22, 117–124.
92) A. Anne, E. Cambril, A. Chovin, C. Demaille, Anal. Chem. 2010, 82, 6353–6362.
93) A. Anne, A. Chovin, C. Demaille, M. Lafouresse, Anal. Chem. 2011, 83, 7924–7932.
94) A. Maljusch, B. Schonberger, A. Lindner, M. Stratmann, M. Rohwerder, W. Schuhmann, Anal. Chem. 2011, 83, 6114–6120.
95) B. Lavine, J. Workman, Anal. Chem. 2010, 82, 4699.
96) K. Backhaus, B. Erichson, W. Plinke, R. Weiber, Multivariate Analysenmethoden: Eine anwendungsorientierte Einführung,
13. Auflage
, Springer, Berlin, Heidelberg, 2010.
97) V. E. Vinzi, W. W. Chin, J. Henseler, H. Wang, (Eds.) Handbook of Partial Least Squares, Springer, Berlin, Heidelberg, 2010.
98) M. Reichenbächer, J. W. Einax, Challenges in Analytical Quality Assurance, Springer, Berlin, Heidelberg, 2011.

Leave a Reply

Your email address will not be published. Required fields are marked *