2012 Trends in Inorganic Chemistry

2012 Trends in Inorganic Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Inorganic Chemistry 2012

R.C. Fischer, J. J. Weigand, R. Wolf, G. Clever, P. Kurz

  • Main-group-element compounds
    New synthesis strategies, unusual bonding situations, and complete catalytic cycles.
  • Coordination chemistry
    Gold continues to be a surprising element, metal-containing supramolecular systems gain complexity.
  • Bioinorganic chemistry
    Mechanisms of metalloenzymes and activation of oxygen.

► Full article (in German):

Trendbericht Anorganische Chemie 2012,

All 2012 trend reports on ChemViews

Authors

Roland C. FischerRoland C. Fischer, born 1976, is an Assistant Professor at the Technical University of Graz, Austria. He studied chemistry at the TU Graz and received his Ph.D. under Christoph Marschner in 2003. In 2005/2006, he worked as a Research Fellow of the Max Kade Austrian Academy of Sciences in the laboratory of Philip P. Power at University of California, Davis, USA.

His research interests include low-valent main-group chemistry, particularly of the heavy elements of Group 13, 14, and 15, and the synthesis of compounds of these elements in unusual coordination geometries.

Jan J. WeigandJan J. Weigand, born 1974, has been Professor of Coordination Chemistry at the Technical University Dresden, Germany, since January 2013. He studied at Ludwig Maximilian University, Munich, Germany, and received his Ph.D. there under Thomas Klapötke in 2005. His doctoral dissertation was awarded the Bavarian Cultural Award. After a postdoctoral stay with Neil Burford at the University of Halifax, Canada, he began his Habilitation at the University of Munster, Germany, under the guidance of Ekkehardt F. Hahn, funded by a grant from the Chemical Industry Fund (Fonds der chemischen Industrie). In 2010, he received the Wöhler Young Investigator Award of the Wöhler Association of the German Chemical Society.

He is interested in multi-charged Group 15 elements, in particular their reactivity and synthetic applications.
 

Robert WolfRobert Wolf, born 1977, has been a Professor of Inorganic Chemistry at the University of Regensburg, Germany, since 2011. He received his Ph.D. from the University of Leipzig, Germany, under Evamarie Hey-Hawkins before taking up postdoctoral positions with Philip P. Power at the University of California, Davis, USA, and with Koop Lammertsma at the Vrije Universiteit, Amsterdam, the Netherlands. From 2008 to 2011, he headed a research group at the University of Munster, Germany, under the guidance of Werner Uhl.

His research focuses on the chemistry of reactive, low-valent transition-metal compounds and polynuclear transition-metal-polyhydrides.

 

Guido CleverGuido Clever, born 1976, has been an Assistant Professor of Inorganic Chemistry at the University of Göttingen, Germany, since 2010. He studied in Heidelberg, Germany, before moving to the laboratory of Thomas Carell first in Marburg and then at the University of Munich, both Germany, where he completed his Ph.D. in 2006. From 2007 to 2009, he was a Postdoctoral Research Officer in the group of Mitsuhiko Shionoya at the University of Tokyo, Japan, sponsored by the Japanese Society for the Promotion of Science (JSPS) and the Humboldt Foundation, before becoming an Assistant Professor at the same institution.

His research interests in the area of supramolecular coordination chemistry include the design, synthesis, and host–guest chemistry of low-symmetry and redox functional interwoven cage structures, and the synthesis of metal-mediated DNA nanoarchitectures.

Philipp Kutz

Philipp Kurz, born 1976, has been Professor of Inorganic Chemistry at the University of Freiburg, Germany, since 2012. He received his doctorate in Zurich, Switzerland, with Roger Alberto and then worked as a postdoctoral researcher in the group of Stenbjörn Styring at Uppsala University, Sweden. From 2007 to 2012 he led a research group in Kiel, Germany, under the supervision of Felix Tuczek.

His research is mainly concerned with light-driven water oxidation and model systems of photosystem II.

References

Main Group Compounds

1) A.-C. Pöppler, H. Keil, D. Stalke, M. John, Angew. Chem. 2012, 124, 7963–7967. DOI: 10.1002/ange.201202116
2) A. V. Zabula, S. N. Spisak, A. S. Filatov, M. A. Petrukhina, Angew. Chem. 2012, 124, 12360–12364. DOI: 10.1002/ange.201206936
3) L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, O. Scheier, Chem. Eur. J. 2012, 18, 4411–4418. DOI: 10.1002/chem.201103432
4) A. Stasch, Angew. Chem. 2012, 124, 1966–1969. DOI: 10.1002/ange.201108134
5) P. Jochmann, J. P. Davin, T. P. Spaniol, L. Maron, J. Okuda, Angew. Chem. 2012, 124, 4528–4531. DOI: 10.1002/ange.201200690
6) R. J. Gilliard, M. Y. Abraham, Y. Wang, P. Wei, Y. Xie, B. Quillian, H. F. Schaefer, III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2012, 134, 9953–9955. DOI: 10.1021/ja304514f
7) F. Kraus, S. A. Baer, M. R. Buchner, A. J. Karttunen, Chem. Eur. J. 2012, 18, 2131–2142. DOI: 10.1002/chem.201103012
8) J. J. Sabatini, A. V. Nagori, G. Chen, P. Chu, R. Damavarapu, T. M. Klapötke, Chem. Eur. J. 2012, 18, 628–631. DOI: 10.1002/chem.201102485
9) H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, Science 2012, 336, 1420–1422. DOI: 10.1126/science.1221138
10) P. Bissinger, H. Braunschweig, A. Damme, T. Kupfer, A. Vargas, Angew. Chem. 2012, 124, 10069–10073. DOI: 10.1002/ange.201204449
11) a) R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610–613. DOI: 10.1126/science.1207573; b) M. A. Celik, R. Sure, S. Klein, G. Bertrand, G. Frenking, Chem. Eur. J. 2012, 18, 5676–5692. DOI: 10.1002/chem.201103965
12) H. Braunschweig, V. Dyakonov, J. O. C. Jimenez-Halla, K. Kraft, I. Krummenacher, K. Radacki, A. Sperlich, J. Wahler, Angew. Chem. 2012, 124, 3031–3034. DOI: 10.1002/ange.201108632
13) S. Pospiech, S. Brough, M. Bolte, H.-W. Lerner, H. F. Bettinger, M. Wagner, Chem. Commun. 2012, 48, 5886–5888. DOI: 10.1039/c2cc32256k
14) H. Braunschweing, R. D. Dewhurst, K. Kraft, S. Östreicher, K. Radacki, Angew. Chem. 2012, 124, 2225–2228. DOI: 10.1002/ange.201107248v
15) A. Wagner, E. Kaifer, H.-J. Himmel, Chem. Commun. 2012, 48, 5277–5279. DOI: 10.1039/c2cc31671d
16) A. Higelin, U. Sachs, S. Keller, I. Krossing, Chem. Eur. J. 2012, 18, 10029–10034. DOI: 10.1002/chem.201104040
17) A. Fukazawa, J. L. Dutton, C. Fan, L. G. Mercier, A. Y. Houghton, Q. Wu, W. E. Piers, M. Parvez, Chem. Sci. 2012, 3, 1814–1818. DOI: 10.1039/c2sc20336g
18) M. J. Sgro, J. Dömer, D. W. Stephan, Chem. Commun. 2012, 48, 7253–7255. DOI: 10.1039/c2cc33301e
19) F. Lavigne, E. Maertens, G. Alcaraz, V. Branchadell, N. Saffon-Merceron, A. Baceiredo, Angew. Chem. 2012, 124,  2539–2541. DOI: 10.1002/ange.201108452
20) Y. Segawa, D. W. Stephan, Chem. Commun. 2012, 48, 11963–11965. DOI: 10.1039/c2cc37190a
21) C. Appelt, J. C. Slootweg, K. Lammertsma, W. Uhl, Angew. Chem. 2012, 124, 6013–6016. DOI: 10.1002/ange.201201855
22) S. Roters, A. Hepp, J. C. Slootweg, K. Lammertsma, W. Uhl. Chem. Commun. 2012, 48, 9616–9618. DOI: 10.1039/c2cc33300g
23) a) I. L. Fedushkin, A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherkasov, G. A. Abakumov, Chem. Eur. J. 2012, 18,
255–266. DOI: 10.1002/chem.201102243; b) I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J. 2012, 18, 11264–11276. DOI: 10.1002/chem.201201364
24) C. A. Caputo, J.-D. Guo, S. Nagase, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2012, 134, 7155–7164. DOI: 10.1021/ja301247h
25) A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500–6503. DOI: 10.1021/ja301042u
26) B. D. Dekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504–6507. DOI: 10.1021/ja301091v
27) S. Inoue, K. Leszcynska, Angew. Chem. 2012, 124, 8717–8721. DOI: 10.1002/ange.201203257
28) K. Junold, J. A. Baus, C. Burschka, R. Tacke, Angew. Chem. 2012, 124, 7126–7129. DOI: 10.1002/ange.201203109
29) L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, Nat. Chem. 2012, 4, 361–365. DOI: 10.1038/nchem.1305
30) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, C. Goedecke, G. Frenking, Chem. Commun. 2012, 48, 8186–8188. DOI: 10.1039/c2cc32887a
31) Z. D. Brown, P. Vasko, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 4045–4048. DOI: 10.1021/ja211874u
32) K. Takeuchi, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 2954–2957. DOI: 10.1021/ja212065a
33) T. Yamaguchi, M. Asay, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 886–889. DOI: 10.1021/ja210669n
34) K. Leszcynska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. 2012, 124, 6891–6895. DOI: 10.1002/ange.201202277
35) H. Tanaka, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 5540–5543. DOI: 10.1021/ja301180v
36) K. Leszcynska, K. Abersfelder, M. Majumdar, B. Neumann, H.-G. Stammler, H. S. Rzepa, P. Jutzi, D. Scheschkewitz, Chem. Commun. 2012, 48, 7820–7822. DOI: 10.1039/c2cc33911k
37) K. Abersfelder, A. Russell, H. S. Rzepa, A. J. P. White, P. R. Haycock, D. Scheschkewitz, J. Am. Chem. Soc. 2012, 134, 16008–16016. DOI: 10.1021/ja307344f
38) J. Li, M. Hermann, G. Frenking, C. Jones, Angew. Chem. 2012, 124, 8739–8742. DOI: 10.1002/ange.201203607
39) J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing, C. Jones, Angew. Chem. 2012, 124, 9695–9699. DOI: 10.1002/ange.201204601
40) A. Schäfer, W. Saak, D. Haase, T. Müller, Angew. Chem. 2012, 124, 3035–3038. DOI: 10.1002/ange.201107958
41) M. Stoelzel, C. Präsang, S. Inoue, S. Enthaler, M. Driess, Angew. Chem. 2012, 124, 411–415. DOI: 10.1002/ange.201105722
42) Y. Xiong, S. Yao, M. Driess, Chem. Eur. J. 2012, 18, 3316–3320. DOI: 10.1002/chem.201103656
43) S. Khan, P. P. Samuel, R. Michel, J. M. Dieterich, R. A. Mata, J.-P. Demers, A. Lange, H. W. Roesky, D. Stalke, Chem. Commun. 2012, 48, 4890–4892. DOI: 10.1039/c2cc31214j
44) B. Blom, M. Driess, D. Gallego, S. Inoue, Chem. Eur. J. 2012, 48, 13355–13360. DOI: 10.1002/chem.201202399
45) H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, J. Am. Chem. Soc. 2012, 134, 10864–10875. DOI: 10.1021/ja301547x
46) H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, J. Am. Chem. Soc. 2012, 134, 6409–6415. DOI: 10.1021/ja300654t
47) A. C. Filippou, A. Barandov, G. Schnakenburg, B. Lewall, M. van Gastel, A. Marchanka, Angew. Chem. 2012, 124, 813–817. DOI: 10.1002/ange.201107120
48) T. Agou, T. Sasamori, N. Tokitoh, Organometallics 2012, 31, 1150–1154. DOI: 10.1021/om201227p
49) H. Braunschweig, A. Damme, R. D. Dewhurst, F. Hupp, J. O. C. Jimenez-Halla, K. Radacki, Chem. Commun. 2012, 48, 10410–10412. DOI: 10.1039/c2cc35777a
50) C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, Chem. Commun. 2012, 48, 9855–9857. DOI: 10.1039/c2cc35228a
51) C. Drost, P. Lönnecke, J. Sieler, Chem. Commun. 2012, 48, 3778–3780. DOI: 10.1039/c2cc30687e
52) S. Traut, C. von Hänisch, A. P. Hähnel, S. Stahl, Chem. Commun. 2012, 48, 6984–6986. DOI: 10.1039/c2cc32615a
53) T. Augenstein, P. Oño-Burgos, D. Nied, F. Breher, Chem. Commun. 2012, 48, 6803–6805. DOI: 10.1039/c2cc33045h
54) S. Spirk, F. Belaj, N. Hurkes, R. Pietschnig, Chem. Commun. 2012, 48, 8398–8400. DOI: 10.1039/c2cc33883a
55) S. Jähingen, E. Brendler, U. Böhme, E. Kroke, Chem. Commun. 2012, 48, 7675–7677. DOI: 10.1039/c2cc31600e
56) Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. DOI: 10.1021/ja2115635
57) C. Schrenk, M. Neumaier, A. Schnepf, Inorg. Chem. 2012, 51, 3989–3995. DOI: 10.1021/ic201730g
58) F. Li, A. Muñoz-Casto, S. Sevov, Angew. Chem. 2012, 124, 8709–8712. DOI: 10.1002/ange.201202906
59) M. W. Hull, S. C. Sevov, Chem. Commun. 2012, 48, 7720–7722. DOI: 10.1039/c2cc32263c
60) U. Friedrich, M. Neumeier, C. Koch, N. Korber, Chem. Commun. 2012, 48, 10544–10546. DOI: 10.1039/c2cc35380f
61) S. Stegmaier, M. Waibel, A. Henze, L.-A. Jantke, A. J. Karttunen, T. F. Fässler, J. Am. Chem. Soc. 2012, 134, 14450–14460. DOI: 10.1021/ja304251t
62) M. P. Grubb, M. L. Warter, H. Xiao, S. Maeda, K . Morokuma, S. W. North, Science 2012, 335, 1075–1078. DOI: 10.1126/science.1216911
63) X. Zheng, H. Beckers, H. Willner, J. F. Stanton, Eur. J. Inorg. Chem. 2012, 3403–3409. DOI: 10.1002/ejic.201200337
64) F. Dielmann, O. Back, M. Henry-Ellinger, P. Jerabek, G. Frenking, G. Bertrand, Science 2012, 337, 1526–1528. DOI: 10.1126/science.1226022
65) N. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc. 2012, 134, 11330–11333. DOI: 10.1021/ja302963p
66) L. J. Hounjet, C. B. Caputo, D. W. Stephan, Angew. Chem. 2012, 124, 4792–4795. DOI: 10.1002/ange.201201422
67) T. Iwamoto, F. Hirakawa, S. Ishida, Angew. Chem. 2012, 124, 12277–12280. DOI: 10.1002/ange.201206997
68) D. Förster, H. Dilger, F. Ehret, M. Nieger, D. Gudat, Eur. J. Inorg. Chem. 2012, 3989–3994. DOI: 10.1002/ejic.201200633
69) A. D. Hendsbee, N. A. Giffin, Y. Zhang, C. C. Pye, J. D. Masuda, Angew. Chem. 2012, 124, 10994–10998. DOI: 10.1002/ange.201206112
70) V. Nesterov, S. Schwieger, G. Schnakenburg, S. Grimme, R. Streubel, Organometallics 2012, 31, 3457–3459. DOI: 10.1021/om300099g
71) R. Streubel, J. M. Villalba Franco, G. Schnakenberg, A. E. Ferao, Chem. Commun. 2012, 48, 5986–5988. DOI: 10.1039/c2cc31851b
72) A. Kreienbrink, P. Lönnecke, M. Findeisen, E. Hey-Hawkins, Chem. Commun. 2012, 48, 9385–9387. DOI: 10.1039/c2cc34860h
73) T. Köchner, T. A. Engesser, H. Scherer, D. A. Plattner, A. Steffani, I. Krossing, Angew. Chem. 2012, 124, 6635–6637. DOI: 10.1002/ange.201201262
74) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. 2012, 124,  3018–3021. DOI: 10.1002/ange.201109010
75) K.-O. Feldmann, R. Fröhlich, J. J. Weigand, Chem. Commun. 2012, 48, 4296–4298. DOI: 10.1039/c2cc18030h
76) K.-O. Feldmann, J. J. Weigand, J. Am. Chem. Soc. 2012, 134, 15443–15456. DOI: 10.1021/ja305406x
77) K.-O. Feldmann, J. J. Weigand, Angew. Chem. 2012, 124, 7663–7667. DOI: 10.1002/ange.201201414
78) F. Dielmann, A. Schindler, S. Scheuermayer, J. Bai, R. Merkle, M. Zabel, A. V. Virovets, E. V. Peresypkina, G. Brunklaus, H. Eckert, M. Scheer, Chem. Eur. J. 2012, 18, 1168–1179. DOI: 10.1002/chem.201102107
79) M. Fleischmann, C. Heindl, M. Seidl, G. Balázs, A. V. Virovets, E. V. Peresypkina, M. Tsunoda, F. P. Gabbaï, M. Scheer, Angew. Chem. 2012, 124, 10056–10059. DOI:10.1002/ange.201204686
80) A. Schulz, A. Villinger, Chem. Eur. J. 2012, 18, 2902–2911. DOI: 10.1002/chem.201102656
81) R. Haiges, M. Rahm, D. A. Dixon, E. B. Garner, III, K. L. Christe, Inorg. Chem. 2012, 51, 1127–1141. DOI: 10.1021/ic202307a
82) C. Hering, A. Schulz, A. Villinger, Angew. Chem. 2012, 124, 6345–6349. DOI: 10.1002/ange.201201851
83) K. Y. Monakhov, C. Gourlaouen, R. Pattacini, P. Braunstein, Inorg. Chem. 2012, 51, 1562–1568. DOI: 10.1021/ic201859c
84) M. F. Groh, A. Isaeva, M. Ruck, Chem. Eur. J. 2012, 18, 10886–10891. DOI: 10.1002/chem.201201038
85) B. Lyhs, D. Bläser, C. Wölper, S. Schulz, G. Jansen, Angew. Chem. 2012, 124, 2008–2013. DOI: 10.1002/ange.201108092
86) J. Schaefer, A. Steffani, D. A. Plattner, I. Krossing, Angew. Chem. 2012, 124, 6112–6115. DOI: 10.1002/ange.201201642
87) V. Vitske, H. Herrmann, M. Enders, E. Kaifer, H.-J. Himmel, Chem. Eur. J. 2012, 18, 14108–14116. DOI: 10.1002/chem.201202113
88) R. Brückner, H. Haller, M Ellwanger, S. Riedel, Chem. Eur. J. 2012, 18, 5741–5747. DOI: 10.1002/chem.201103659
89) C. Pérez, M. T. Muckle, D. P. Zalewski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science 2012, 336, 897–901. DOI: 10.1126/science.1220574
90) E. S. Stoyanov, G. Gunbas, N. Hafezi, M. Mascal, I. V. Stoyanova, F. S. Tham, C. A. Reed, J. Am. Chem. Soc. 2012, 134, 707–714. DOI: 10.1021/ja209942s
91) J. Schmedt auf der Günne, M. Mangstl, F. Kraus, Angew. Chem. 2012, 124, 7968–7971. DOI: 10.1002/ange.201203515
92) C. Logemann, T. Klüner, M. S. Wickleder, Angew. Chem. 2012, 124, 5082–5085. DOI: 10.1002/ange.201108206
93) C. Logemann, D. Gunzelmann, T. Klüner, J. Senker, M. S. Wickleder, Chem. Eur. J. 2012, 48, 15495–15503. DOI: 10.1002/chem.201202344
94) J. Bruns, M. Eul, R. Pöttgen, M. S. Wickleder, Angew. Chem. 2012, 124, 2247–2250. DOI: 10.1002/ange.201107197
95) H. Poleschner, S. Ellrodt, M. Malischewski, J.-Y. Nakatsuji, C. Rohner, K. Seppelt, Angew. Chem. 2012, 124, 433–437. DOI: 10.1002/ange.201106708
96) H.-J. Frohn, V. Bilir, U. Westphal, Inorg. Chem. 2012, 51, 11251–11258. DOI: 10.1021/ic3017112
97) M. Bouska, L. Dostál, Z. Padelkova, A. Lycka, S. Herres-Pawlis, K. Jurkschat, R. Jambor, Angew. Chem. 2012, 124, 3535–3540. DOI: 10.1002/ange.201107666
98) S. M. Walter, F. Kniep, L. Rout, F. P. Schmidtchen, E. Herdtweck, S. M. Huber. J. Am. Chem. Soc. 2012, 134, 8507–8512. DOI: 10.1021/ja2119207

Coordination Chemistry

1) D.-A. Rosca, D. A. Smith, D. L. Hughes, M. Bochmann, Angew. Chem. 2012, 124, 10795–10798. DOI: 10.1002/ange.201206468
2) N. Savjani, D.-A. Rosca, M. Schormann, M. Bochmann, Angew. Chem. 2013, 125, 908–911. DOI: 10.1002/ange.201208356
3) T. J. Robilotto, J. Bacsa, T. G. Gray, J. P. Sadighi, Angew. Chem. 2012, 124, 12243–12246. DOI: 10.1002/ange.201206712
4) A. C. Jahnke, K. Pröpper, C. Bronner, J. Teichgräber, S. Dechert, M. John, O. S. Wenger, F. Meyer, J. Am. Chem. Soc. 2012, 134, 2938–2941. DOI: 10.1021/ja211549e
5) a) T.-P. Lin, I.-S. Ke, F. P. Gabbaï, Angew. Chem. 2012, 124, 5069–5072; b) C. Tschersich, C. Limberg, S. Roggan, C. Herwig, N. Ernsting, S. Kovalenko, S. Mebs, Angew. Chem. 2012, 124, 5073–5077. DOI: 10.1002/ange.201200848
6) J. Henning, L. Wesemann, Angew. Chem. 2012, 124, 13041–13045. DOI: 10.1002/ange.201206767
7) H. Braunschweig, A. Damme, R. D. Dewhurst, A. Vargas, Nat. Chem. 2013, 5, 115–121. DOI: 10.1038/nchem.1520
8) J. Bruns, M. Eul, R. Pöttgen, M. S. Wickleder, Angew. Chem. 2012, 124, 2247–2250. DOI: 10.1002/ange.201107197
9) M. R. MacDonald, J. E. Bates, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2012, 134, 8420–8423. DOI: 10.1021/ja303357w
10) W. J. Evans, M. Fang, J. E. Bates, F. Furche, J. W. Ziller, M. D. Kiesz, J. I. Zink, Nat. Chem. 2010, 2, 645–647. DOI: 10.1038/nchem.701
11) N. A. Siladke, K. R. Meihaus, J. W. Ziller, M. Fang, F. Furche, J. R. Long, W. J. Evans, J. Am. Chem. Soc. 2012, 134, 1243–1249. DOI: 10.1021/ja2096128
12) D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Science 2012, 337, 717–720. DOI: 10.1126/science.1223488
13) H. Kropp, A. E. King, M. M. Khusniyarov, F. W. Heinemann, K. M. Lancaster, S. DeBeer, E. Bill, K. Meyer, J. Am. Chem. Soc. 2012, 134, 15538–15544. DOI: 10.1021/ja306647c
14) M. G. Scheibel, B. Askevold, F. W. Heinemann, E. J. Reijerse, B. de Bruin, S. Schneider, Nat. Chem. 2012, 4, 552–558. DOI: 10.1038/nchem.1368
15) M. Maekawa, M. Romelt, C. G. Daniliuc, P. G. Jones, P. S. White, F. Neese, M. D. Walter, Chem. Sci. 2012, 3, 2972–2979. DOI: 10.1039/c2sc20737k
16) M. Plois, W. Hujo, S. Grimme, C. Schwickert, E. Bill, B. de Bruin, R. Pöttgen, R. Wolf, Angew. Chem. 2013, 125, 1352–1357. DOI: 10.1002/ange.201205209
17) M. C. Lipke, T. D. Tilley, Angew. Chem. 2012, 124, 11277–11283. DOI: 10.1002/ange.201202328
18) I. M. Riddlestone, S. Edmonds, P. A. Kaufman, J. Urbano, J. I. Bates, M. J. Kelly, A. L. Thompson, R. Taylor, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 2551–2554. DOI: 10.1021/ja2119892
19) S. D. Pike, A. L. Thompson, A. G. Algarra, D. C. Apperley, S. A. Macgregor, A. S. Weller, Science 2012, 337, 1648–1651. DOI: 10.1126/science.1225028
20) H. Braunschweig, P. Brenner, R. D. Dewhurst, I. Krummenacher, B. Pfaffinger, A. Vargas, Nat. Commun. 2012, 3, 872. DOI: 10.1038/ncomms1884
21) Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321–1324. DOI: 10.1126/science.1227775
22) S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502. DOI: 10.1038/nchem.1350
23) L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423. DOI: 10.1038/nchem.1301
24) M. Yuki, H. Tanaka, K. Sasaki, Y. Miyake, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2012, 3, 1254. DOI: 10.1038/ncomms2264
25) J. M. Darmon, S. C. E. Stieber, K. T. Sylvester, I. Fernández, E. Lobkovsky, S. P. Semproni, E. Bill, K. Wieghardt, S. DeBeer, P. J. Chirik, J. Am. Chem. Soc. 2012, 134, 17125–17137. DOI: 10.1021/ja306526d
26) S. Park, D. Bézier, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 11404–11407. DOI: 10.1021/ja305318c
27) M. Montag, J. Zhang, D. Milstein, J. Am. Chem. Soc. 2012, 134, 10325–10328. DOI: 10.1021/ja303121v
28) B. Najjari, S. Le Gac, T. Roisnel, V. Dorcet, B. Boitrel, J. Am. Chem. Soc. 2012, 134, 16017–16032. DOI. 10.1021/ja307349d
29) C. W. Machan, M. Adelhardt, A. A. Sarjeant, C. L. Stern, J. Sutter, K. Meyer, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 16921−16924. DOI: 10.1021/ja3045019
30) G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Angew. Chem. 2012, 124, 12672–12676. DOI: 10.1002/ange.201206571
31) T. Hirose, F. Helmich, E. W. Meijer, Angew. Chem. 2013, 125, 322–327. DOI: 10.1002/ange.201205085
32) M. Schmittel, S. De, S. Pramanik, Angew. Chem. 2012, 124, 3898–3902. DOI: 10.1002/ange.201108089
33) T. Gadzikwa, R. Bellini, H. L. Dekker, J. N. H. Reek, J. Am. Chem. Soc. 2012, 134, 2860–2863. DOI: 10.1021/ja211455j
34) I. A. Riddell, M. M. J. Smulders, J. K. Clegg, Y. R. Hristova, B. Breiner, J. D. Thoburn, J. R. Nitschke, Nat. Chem. 2012, 4, 751–756. DOI: 10.1038/nchem.1407
35) W. Meng, J. K. Clegg, J. R. Nitschke, Angew. Chem. 2012, 124, 1917–1920. DOI: 10.1002/ange.201108450
36) Y.-R. Zheng, W.-J. Lan, M. Wang, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2011, 133, 17045–17055. DOI: 10.1021/ja207217t
37) S. Bivaud, J.-Y. Balandier, M. Chas, M. Allain, S. Goeb, M. Sallé, J. Am. Chem. Soc. 2012, 134, 11968−11970. DOI: 10.1021/ja305451v
38) Q.-F. Sun, S. Sato, M. Fujita, Nat. Chem. 2012, 4, 330–333. DOI: 10.1038/nchem.1285
39) D. Fujita, K. Suzuki, S. Sato, M. Yagi-Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, K. Kato, M. Fujita, Nat. Commun. 2012, 3, 1093–1093. DOI: 10.1038/ncomms2093
40) J. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778–784. DOI: 10.1039/c2sc00899h
41) F. Schmitt, J. Freudenreich, N. P. E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink, B. Therrien, J. Am. Chem. Soc. 2012, 134, 754–757. DOI: 10.1021/ja207784t
42) O. Chepelin, J. Ujma, P. E. Barran, P. J. Lusby, Angew. Chem. 2012, 124, 4270 –4273. DOI: 10.1002/ange.201108994
43) S. Pasquale, S. Sattin, E. C. Escudero-Adán, M. Martínez-Belmonte, J. de Mendoza, Nat. Commun. 2012, 3, 785. DOI: 10.1038/ncomms1793
44) V. Mougel, L. Chatelain, J. Pécaut, R. Caciuffo, E. Colineau, J.-C. Griveau, M. Mazzanti, Nat. Chem. 2012, 4, 1011–1017. DOI: 10.1038/nchem.1494
45) W.-X. Zhang, T. Shiga, H. Miyasaka, M. Yamashita, J. Am. Chem. Soc. 2012, 134, 6908–6911. DOI: 10.1021/ja300152k
46) J. Marrot, M. A. Pilette, M. Haouas, S. Floquet, F. Taulelle, X. López, J. M. Poblet, E. Cadot, J. Am. Chem. Soc. 2012, 134, 1724–1737. DOI: 10.1021/ja2090383
47) G. J. T. Cooper, R. W. Bowman, E. P. Magennis, F. Fernandez-Trillo, C. Alexander, M. J. Padgett, L. Cronin, Angew. Chem. 2012, 124, 12926–12930. DOI: 10.1002/ange.201204405
48) B. Kowalewski, J. Poppe, U. Demmer, E. Warkentin, T. Dierks, U. Ermler, K. Schneider, J. Am. Chem. Soc. 2012, 134, 9768–9774. DOI: 10.1021/ja303084n
49) V. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456–460. DOI: 10.1038/nchem.1354
50) A. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A. M. Z. Slawin, J. F. Stoddart, J.-P. Sauvage, O. M. Yaghi, Angew. Chem. 2012, 124, 2202–2205. DOI: 10.1002/ange.201107873
51) T. C. Narayan, T. Miyakai, S. Seki, M. Dinca, J. Am. Chem. Soc. 2012, 134, 12932−12935. DOI: 10.1021/ja3059827
52) S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, Nat. Chem. 2012, 4, 887–894. DOI: 10.1038/nchem.1457
53) M. Meilikhov, S. Furukawa, K. Hirai, R. A. Fischer, S. Kitagawa, Angew. Chem. 2013, 125, 359–363. DOI: 10.1002/ange.201207320
54) C. S. Kley, J. Cechal, T. Kumagai, F. Schramm, M. Ruben, S. Stepanow, K. Kern, J. Am. Chem. Soc. 2012, 134,  6072–6075. DOI: 10.1021/ja211749b
55) J. Adisoejoso, Y. Li, J. Liu, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2012, 134, 18526–18529. DOI: 10.1021/ja308480x

Bioinorganic Chemistry

1) U. Schatzschneider, Nachr. Chem. 2012, 60, 247–250. DOI: 10.1002/nadc.201290117
2) I. Bürstel, E. Siebert, G. Winter, P. Hummel, I. Zebger, B. Friedrich, O. Lenz, J. Biol. Chem. 2012, 287, 38845–38853. DOI: 10.1074/jbc.M112.376947
3) H. S. Shafaat, K. Weber, T. Petrenko, F. Neese, W. Lubitz, Inorg. Chem. 2012, 51, 11787–11797. DOI: 10.1021/ic3017276
4) M. Kampa, W. Lubitz, M. van Gastel, F. Neese, J. Biol. Inorg. Chem. 2012, 17, 1269–1281. DOI: 10.1007/s00775-012-0941-9
5) L. Rapatskiy, N. Cox, A. Savitsky, W. M. Ames, J. Sander, M. M. Nowaczyk, M. Rögner, A. Boussac, F. Neese, J. Messinger, W. Lubitz, J. Am. Chem. Soc. 2012, 134, 16619–16634. DOI: 10.1021/ja3053267
6) A. Klauss, M. Haumann, H. Dau, Proc. Natl. Acad. Sci. USA 2012, 109, 16035–16040. DOI: 10.1073/pnas.1206266109
7) A. Arnold, C. Limberg, R. Metzinger, Inorg. Chem. 2012, 51, 12210–12217. DOI: 10.1021/ic301391s
8) M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem. 2010, 122, 6583–6587. DOI: 10.1002/ange.201000973
9) M. Sallmann, I. Siewert, L. Fohlmeister, C. Limberg, C. Knispel, Angew. Chem. 2012, 124, 2277–2280. DOI: 10.1002/ange.201107345
10) G. J. Christian, S. F. Ye, F. Neese, Chem. Sci. 2012, 3, 1600–1611. DOI: 10.1039/c2sc00754a
11) F. F. Pfaff, F. Heims, S. Kundu, S. Mebs, K. Ray, Chem. Commun. 2012, 48, 3730–3732. DOI: 10.1039/c2cc30716b
12) M. Wiechen, I. Zaharieva, H. Dau, P. Kurz, Chem. Sci. 2012, 3, 2330–2339. DOI: 10.1039/c2sc20226c
13) A. Thomas, E. Rosseeva, O. Hochrein, W. Carrillo-Cabrera, P. Simon, P. Duchstein, D. Zahn, R. Kniep, Chem. Eur. J. 2012, 18, 4000–4009. DOI: 10.1002/chem.201102228
14) S. D. Köster, H. Alborzinia, S. Z. Can, I. Kitanovic, S. Wölfl, R. Rubbiani, I. Ott, P. Riesterer, A. Prokop, K. Merz, N. Metzler-Nolte, Chem. Sci. 2012, 3, 2062–2072.
15) G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, Chem. Commun. 2012, 48, 11528–11530. DOI: 10.1039/c2cc36491c
16) E. Oehlke, S. S. Kong, P. Arciszewski, S. Wiebalck, U. Abram, J. Am. Chem. Soc. 2012, 134, 9118–9121. DOI: 10.1021/ja3033718
17) www.icbic16.com

Leave a Reply

Kindly review our community guidelines before leaving a comment.

Your email address will not be published. Required fields are marked *