2012 Trends in Technical Chemistry

2012 Trends in Technical Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Technical Chemistry 2012

R. Güttel, D. Ziegenbalg, L. Greiner

Energy and raw material conversion dictate many current research and development themes in the area of industrial chemistry. This includes the question of how to use biogenic raw materials and energy. What solutions, both technically and economically feasible, will be available in the foreseeable future? How will technical photochemistry evolve in this context?

► Full article (in German):

All 2012 trend reports on ChemViews


Robert Güttel

Robert Güttel, born 1980, studied chemical engineering at the Technical University of Dresden, Germany, and gained his Ph.D. in 2009 at the Technical University of Clausthal, Germany. After a research fellowship at the Max Planck Institute for Coal Research, Mülheim an der Ruhr, Germany, he gained his habilitation. Since 2010, he has been at the Institute of Chemical Engineering of the Technical University of Clausthal.

Dirk ZiegenbalgDirk Ziegenbalg, born 1985, studied chemistry at the Friedrich Schiller University of Jena, Germany, where he also received his Ph.D. He gained his habilitation at the end of 2012 at the Institute for Technical Chemistry, University of Stuttgart, Germany.


Lasse GreinerLasse Greiner, born 1971, studied chemistry at the University of Bonn, Germany, and received his Ph.D. in 2002 at the Institute of Biotechnology, Research Centre Jülich, Germany. After postdoctoral work at the University of Hull, UK, he became a group leader at the Institute for Technical and Macromolecular Chemistry at RWTH Aachen, Germany, in 2003. From 2010 to 2012, he led the technical chemistry division at the DECHEMA Research Institute (formerly the Karl Winnacker Institute).


1) A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411. DOI: 10.1021/cr050989d
2) R. Palkovits, Angew. Chem. 2010, 122, 4434. DOI: 10.1002/ange.201002061
3) F. Fischer, H. Tropsch, Verfahren Zur Gewinnung mehrgliedriger Paraffin – kohlenwasserstoffe aus Kohlenoxyden und Wasserstoff auf katalytischem Wege, patent number DRP 484337, 1925. Link
4) P. Sabatier, J. B. Senderens, Acad. Sci. 1902, 314, 514.
5) G. Schaub, R. Edzang, Chem. Ing. Tech. 2011, 83, 1912. DOI: 10.1002/cite.201100068
6) H. Kölbel, Chem. Ing. Tech. 1957, 29, 505. DOI: 10.1002/cite.330290803
7) Q. Zhang, J. Kang, Y. Wang, ChemCatChem 2010, 2, 1030. DOI: 10.1002/cctc.201000071
8) F. Schüth, Chem. Ing. Tech. 2011, 83, 1984. DOI: 10.1002/cite.201100147
9) F. Schüth, R. Palkovits, R. Schlögl, D. S. Su, Energy Environ. Sci. 2012, 5, 6278. DOI: 10.1039/C2EE02865D
10) W. Hauptmann, A. Schuler, J. Gieshoff, M. Votsmeier, Chem. Ing. Tech. 2011, 83, 1681. DOI: 10.1002/cite.201100125
11) M. Sterner, M. Specht, Solarzeitalter 2010, 1, 51–58. Link (PDF)
12) I. E. Grossmann, A. W. Westerberg, Aiche J. 2000, 46, 1700. DOI: 10.1002/aic.690460902
13) J. C. Charpentier, T. F. McKenna, Chem. Eng. Sci. 2004, 59, 1617. DOI: 10.1016/j.ces.2004.01.044
14) J. Li, J. Zhang, W. Ge, X. Liu, Chem. Eng. Sci. 2004, 59, 1687. DOI: 10.1016/j.ces.2004.01.025
15) W. Marquardt, Chem. Eng. Res. Des. 2005, 83, 561. DOI: 10.1205/cherd.05086
16) J.-C. Charpentier, Chem. Eng. Sci. 2002, 57, 4667. DOI: 10.1016/S0009-2509(02)00287-7
17) H. Freund, A. Peschel, K. Sundmacher, Chem. Ing. Tech. 2011, 83, 420. DOI: 10.1002/cite.201000195
18) Q. Xie, Y. Wang, M. Pedram, Y. Kim, D. Shin, N. Chang, in Asia and South Pacific Design Automation Conference (ASP-DAC), 2012, 627–632.
19) J. F. Whitacre, T. Wiley, S. Shanbhag et al., J. Power Sources 2012, 213, 255. DOI: 10.1016/j.jpowsour.2012.04.018
20) ISO 9845–1 Solar Energy – Reference Solar Spectral Irradiance at the Ground at Different Receiving Conditions – Part 1:
Direct Normal and Hemispherical Solar Irradiance for Air Mass 1,5, International Organization For Standardization, Geneva, Switzerland, 1992. Link
21) R. Abe, J. Photochem. Photobiol., C 2010, 11, 179–209. DOI: 10.1016/j.jphotochemrev.2011.02.003
22) S. I. Allakhverdiev, V. Thavasi, V. D. Kreslavski et al., J. Photochem. Photobiol., C 2010, 11, 101–113. DOI: 10.1016/j.jphotochemrev.2010.07.002
23) E. S. Andreiadis, M. Chavarot-Kerlidou, M. Fontecave, V. Artero, Photochem. Photobiol. 2011, 87, 946–964. DOI: 10.1111/j.1751-1097.2011.00966.x
24) T. Hisatomi, T. Minegishi, K. Domen, Bull. Chem. Soc. Jpn. 2012, 85, 647–655. DOI: 10.1246/bcsj.20120058
25) T. W. Hamann, Dalton Trans. 2012, 41, 7830–7834. DOI: 10.1039/c2dt30340j
26) A. Hellman, R. G. S. Pala, J. Phys. Chem. C 2011, 115, 12901–12907. DOI: 10.1021/jp200751j
27) Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, P. Yang, Nano Lett. 2012, 12, 1678–1682. DOI: 10.1021/nl3001138
28) N. Karousis, A. S. D. Sandanayaka, T. Hasobe, S. P. Economopoulos, E. Sarantopoulou, N. Tagmatarchis, J. Mater. Chem. 2011, 21, 109–117. DOI: 10.1039/c0jm00991a
29) K. Maeda, J. Photochem. Photobiol., C 2011, 12, 237–268. DOI: 10.1016/j.jphotochemrev.2011.07.001
30) P. D. Tran, L. H. Wong, J. Barber, J. S. C. Loo, Energy Environ. Sci. 2012, 5, 5902–5918. DOI: 10.1039/C2EE02849B
31) P. D. Frischmann, K. Mahata, F. Wurthner, Chem. Soc. Rev. 2013. DOI: 10.1039/C2CS35223K
32) K. Woronowicz, S. Ahmed, A. A. Biradar, A. V. Biradar, D. P. Birnie, T. Asefa, R. A. Niederman, Photochem. Photobiol. 2012, 88, 1467–1472. DOI: 10.1111/j.1751-1097.2012.01190.x
33) J. R. Swierk, T. E. Mallouk, Chem. Soc. Rev. 2013. DOI: 10.1039/C2CS35246J
34) A. M. Braun, M.-T. Maurette, E. Oliveros, Photochemical Technology, John Wiley & Sons Ltd, Chichester, UK, 1991. ISBN: 978-0471926528
35) G. F. Swiegers, D. R. MacFarlane, D. L. Officer et al., Aust. J. Chem. 2012, 65, 577–582. DOI: 10.1071/CH12048
36) C. Huang, W. Yao, A. T. Raissi, N. Muradov, Sol. Energy 2011, 85, 19–27. DOI: 10.1016/j.solener.2010.11.004
37) M. Oelgemöller, Chem. Eng. Technol. 2012, 35, 1144–1152. DOI: 10.1002/ceat.201200009
38) M. Oelgemöller, O. Shvydkiv, Molecules 2011, 16, 7522–7550. DOI: 10.3390/molecules16097522
39) O. Shvydkiv, C. Limburg, K. Nolan, M. Oelgemöller, J. Flow Chem. 2012, 2, 52–55. DOI: 10.1556/jfchem.2012.00022
40) A. Yavorskyy, O. Shvydkiv, C. Limburg, K. Nolan, Y. M. C. Delaure, M. Oelgemöller, Green Chem. 2012, 14, 888–892. DOI: 10.1039/c2gc16439f
41) A. Yavorskyy, O. Shvydkiv, K. Nolan, N. Hoffmann, M. Oelgemöller, Tetrahedron Lett. 2011, 52, 278–280. DOI: 10.1016/j.tetlet.2010.11.018
42) F. Levesque, P. H. Seeberger, Org. Lett. 2011, 13, 5008–5011. DOI: 10.1021/ol2017643
43) F. Lévesque, P. H. Seeberger, Angew. Chem. 2012, 124, 1738–1741. DOI: 10.1002/ange.201107446
44) S. Fuse, Y. Mifune, N. Tanabe, T. Takahashi, Org. Biomol. Chem. 2012, 10, 5205–5211. DOI: 10.1039/c2ob25511a
45) R. A. Maurya, C. P. Park, D.-P. Kim, Beilstein J. Org. Chem. 2011, 7, 1158–1163. DOI: 10.3762/bjoc.7.134
46) T. Oppenlaender, Photochemical Purification of Water and Air, Wiley-VCH, Weinheim, Germany, 2003. ISBN: 978-3-527-61089-1
47) M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., Appl. Catal., B 2012, 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036
48) J. Kockler, D. Kanakaraju, B. Glass, M. Oelgemöller, J. Sustainable Sci. Manage. 2012, 7, 23–29. Link
49) G. Laera, M. N. Chong, B. Jin, A. Lopez, Bioresour. Technol. 2011, 102, 7012–7015. DOI: 10.1016/j.biortech.2011.04.056
50) S. Kim, S.-K. Lee, J. Photochem. Photobiol., A 2009, 203, 145–150. DOI: 10.1016/j.jphotochem.2009.01.011
51) S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 2009, 147, 1–59. DOI: 10.1016/j.cattod.2009.06.018
52) G. Laera, D. Cassano, A. Lopez, A. Pinto, A. Pollice, G. Ricco, G. Mascolo, Environ. Sci. Technol. 2011, 46, 1010–1018. DOI: 10.1021/es202707w
53) Y. Liu, J. Li, B. Zhou, X. Li, H. Chen et al., Water Research 2011, 45, 3991–3998. DOI: 10.1016/j.watres.2011.05.004
54) M. Mohajerani, M. Mehrvar, F. Ein-Mozaffari, Can. J. Chem. Eng. 2012, 90, 719–729. DOI: 10.1002/cjce.20569

Leave a Reply

Your email address will not be published.