Miniature Arm Lifts Weights

  • Author: Angewandte Chemie International Edition
  • Published Date: 24 July 2013
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Miniature Arm Lifts Weights

Hard Working Polymer

A small plastic strip can do “weight training” to effortlessly lift many times its own weight, driven by cyclic changes in the humidity of the surrounding air. This strong “artificial arm” is based on the interaction between microgels and a layer of polycations that shrinks as it dries, according to a report presented by Canadian researchers in the journal Angewandte Chemie.


Polymer materials that perform work in response to a chemical or physical stimulus are often called “artificial muscles”. These are very interesting for a number of applications, including controlling the movements of “gentler” robots. All components of such robots need to be soft and flexible so that they don’t damage delicate objects and can move in tight spaces.


Microgel Monolayer

The arm developed by researchers working with Michael J. Serpe at the University of Alberta is constructed in the following way: A strip of a plastic film is coated with chromium and gold, followed by a microgel monolayer. Microgels are cross-linked polymers that swell up with a solvent such as water to form gel particles with diameters of up to a few micrometers. The Canadian researchers used negatively charged microgels made from poly(N-isopropylacrylamide) and acrylic acid. A solution containing polycations is deposited onto the gel. These act as positive counterions.


When this system dries out, the hydrophobic interactions between the hydrocarbon regions of the polymer cations increase considerably, which causes the layer containing the polymer cations to shrink. Because the electrostatic attraction between the polycations and the microgel is very strong and the microgel layer is very firmly attached to the coated sheet of plastic, the ends of the strip bend upwards and the system curls up. When the air humidity is increased, it stretches back out.


Testing the Artificial Arm

The researchers hung one of their strips up in a chamber with controlled humidity conditions. By changing the humidity, they were able to make their artificial arm “grip” the handle of a small package and to “hold on” as it rose up. In another experiment, they hung a chain of paperclips to the end of one extended mini-arm. Cyclic changes in the humidity caused the arm to raise and lower this weight, which was 14 times as heavy as the arm itself, like a miniature weight-lifting exercise. “Given that a human arm is approximately 6.5 % of the total mass of the human body, this is equivalent to a 75 kg human with a single arm that is capable of lifting 68.3 kg,” Serpe says to illustrate the strength of his miniature arm. Even hanging 52.2 g of weight from a curled-up arm was not enough to stretch it out. If a 75 kg human wanted to achieve a similar feat, he would have to keep his arm bent even with 1280 kg pulling on it.


Article Views: 2753

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH