Triazole-Tailored Biomimetic Ion Channels

  • ChemPubSoc Europe Logo
  • Author: Hayley Charville
  • Published Date: 21 March 2014
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Triazole-Tailored Biomimetic Ion Channels

Related Societies

Transmembrane proteins facilitate the transport of ions across lipid bilayers in biological membranes. In recent years, the synthesis of compounds that can mimic the structural aspects of these transmembrane proteins has received much attention. For example, biomimetic nanochannels have been developed for use as drug delivery systems, antimicrobial agents, and biosensors. However, the preparation of these ion channels generally involves multistep linear syntheses, resulting in low overall yields.


Claudia Steinem, Georg August University Göttingen, Germany, and Jyotirmayee Dash, Indian Association for the Cultivation of Science, Kolkata, India, and co-workers have developed self-assembled "click" ion channels. For this they used a high yielding azide–alkyne cycloaddition between lipophilic guanosine azides and guanosine alkynes with a variety of covalent linkers. The ion-channel activity of these diguanosine derivatives was investigated by using voltage-clamp experiments, which showed that discrete channels, with stable and large pores, were formed. These diguanosine derivatives modulated the traffic of ions across a phospholipid bilayer, exhibiting a variation in conductance spanning three orders of magnitude (pS to nS). The pore size and conductance properties of these diguanosine derivatives could be controlled by modifying the "click" linker.

This new modular approach could lead to synthetic ion channels with increased diversity, pore size, and ionic selectivity.


Article Views: 4419

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH