New Type of Sodium-Ion Battery

  • ChemPubSoc Europe Logo
  • Author: Kate Lawrence
  • Published Date: 06 March 2014
  • Source / Publisher: ChemElectroChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: New Type of Sodium-Ion Battery

Related Societies

Rechargeable batteries represent one type of electrical energy-storage system (ESS) technology. They are capable of reversibly storing and releasing electrical energy without involving Carnot cycles, thus, potentially allowing for high efficiencies. Current state-of-the-art battery technologies available for large-scale applications are either too costly, e.g. sodium–sulfur and lithium-ion batteries, or unsuitable for enduring deep charge/discharge cycling over a long period of time, i.e. the lead-acid battery.


Craig Banks, Manchester Metropolitan University, UK, together with Xiaobo Ji and co-workers, Central South University, Changsha, PR China, present an aqueous sodium-ion battery with a Na3V2(PO4)3 (NVP) electrode, in which the alkaline ions of the aqueous electrolyte (1 M Na2SO4) can intercalate the electrode compound. This leads to a reversible capacity similar to that observed in aqueous lithium-ion batteries. The power of the battery is expected to be superior, because of the promising ion conductivity of NVP in addition to the high conductivity of the aqueous electrolyte. Moreover, replacement of lithium-ion electrodes and electrolytes with sodium-ion-based systems can further reduce the cost of the components assembled in aqueous batteries.

This initial exploration of NVP in aqueous electrolyte provides insights for the fabrication of a new type of sodium-ion battery, which should be safe, low cost, and environmentally friendly, as well as exhibit a high capacity.


Article Views: 5014

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH