Self-Propelled Microfish Robot for Selective Detection of Pb2+

  • ChemPubSoc Europe Logo
  • Author: Claire D'Andola
  • Published Date: 03 April 2014
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Self-Propelled Microfish Robot for Selective Detection of Pb<sup>2+</sup>

Related Societies

The availability of clean drinking water is of utmost importance for the world population. Anthropogenic pollutants of waters, such as heavy-metal ions, are major problems in water contamination. The response of living organisms towards aquatic contamination has been one of the frontlines of defense against the pollution of water bodies. Behavioral studies and mortality rates of fish have been demonstrated to both identify and quantify the amount of contaminants in water. However, given the absence of clear guidelines, consistency, and the sheer human capital and technological intensiveness required for such a setup, the implementation is extremely difficult.

Martin Pumera and co-workers, Nanyang Technological University, Singapore, tackle this problem by replacing biological toxicity assays, which use higher organisms, with artificial inorganic self-propelled microtubular robots. The viability and activity of these robots are negatively influenced by heavy metals, such as Pb2+, in a similar manner to the viability of fish models. This allows the establishment of a lethal dose (LD50) of heavy metal for artificial inorganic microfish robots.
The self-propelled microfish robots show a specific response to Pb2+ compared to Cd2+, upon Pb(NO3)2 and Cd(NO3)2 poisoning, respectively. The differentiating behavior of Pb2+ with inorganic Pt microfish robots allows the selective detection of Pb2+ over Cd2+ in water. This is a possible first step towards replacing biological toxicity assays with biomimetic inorganic autonomous robotic systems.

Article Views: 4220

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)published by Wiley-VCH