Non-Radiative Energy Transfer

Non-Radiative Energy Transfer

Author: Angewandte Chemie International Edition

Non-radiative energy transfer in molecules has been extensively studied and typically involves either Coulombic interactions (Förster-type) or electronic exchange. Thomas Ebbesen and colleagues, Institut de Science et d’Ingénierie Supramoléculaires, Strasbourg, France, have found direct evidence of enhanced non-radiative energy transfer mediated by hybrid light-matter states.

The team used self-organized J-aggregates of cyanines (which are good Förster donor–acceptor pairs) and studied their energy-transfer dynamics when incorporated into optical cavities. Fluorescence excitation spectroscopy and femtosecond pump-probe measurements showed that the energy transfer is highly enhanced when both the donor and acceptor form light-matter hybrid states with the cavity vacuum field. The resulting delocalized hybrid states connect the donor and acceptor molecules, playing the role of a bridge to enhance the rate of energy transfer by at least a factor of seven compared to outside the cavity.

According to the researchers, this demonstration of enhanced energy transfer through cascades of hybrid light-matter states could have fundamental implications for coherent energy transport and light harvesting. This finding could also be beneficial for solar energy conversion and light-matter strong coupling could impact molecular and materials science.


 

Leave a Reply

Your email address will not be published.