Efficient Synthesis of Alkyl Aryl Ketones

  • Author: ChemistryViews.org
  • Published: 10 September 2018
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Advanced Synthesis & Catalysis/Wiley-VCH
thumbnail image: Efficient Synthesis of Alkyl Aryl Ketones

Unsymmetrical ketones, e.g., alkyl aryl ketones (pictured right), have a wide range of applications in the chemical industry and can also be further transformed into other useful compounds using reactions at their carbonyl group. Usually, alkyl aryl ketones are prepared by a Friedel‐Crafts acylation of arenes, However, this requires electron‐rich arenes and stoichiometric amounts of Lewis acid.

Xiao‐Feng Wu, Zhejiang Sci-Tech University, Hangzhou, China, and University of Rostock, Germany, and colleagues have developed an efficient carbonylative cross‐coupling of aryl iodides and unactivated alkyl bromides to give alkyl aryl ketones. The team reacted the alkyl iodides and alkyl bromides with CO, which was produced from formic acid in a so-called In-Ex tube. This type of tube is a special apparatus combining two reaction vessels, one for the production of a gas and one for the intended reaction. This setup improves the safety when handling toxic gases like CO. In addition to the substrates, the reaction requires Pd2(dba)3 (dba = dibenzylideneacetone) as a catalyst, PPh3 as a ligand, and Mg/ZnCl2 to form intermediate alkylmagnesium and alkylzinc bromides. It is performed in tetrahydrofuran (THF) at 55 °C for 12 h.

A variety of alkyl aryl ketones were synthesized in moderate to excellent yields. Both primary and secondary alkyl bromides were suitable coupling partners for the reaction. The mechanism involves an oxidative addition of the aryl iodide to the Pd catalyst, followed by the insertion of CO and the reaction with the alkylzinc compounds formed in situ. These alkylzinc compounds are formed from the alkyl bromide via an alkylmagnesium intermediate. Zinc alone was not reactive enough for this approach. According to the researchers, the developed method can also be used for the late‐stage functionalization of natural products and complex molecules.


Article Views: 2395

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH