Atomistic Defects Can Split Electron Beams

  • Author: Liam Critchley
  • Published: 12 April 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: ACS Nano/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Atomistic Defects Can Split Electron Beams

Topological defects in atomic arrays, especially within solid-state materials, can break the translational symmetry of the material. These defects can enable such materials to show unique properties, such as ferromagnetism when the material is traditionally anti-ferromagnetic.


Huolin L. Xin, University of California, Irvine, USA, and Brookhaven National Laboratory, Upton, NY, USA, Xiaoyan Zhong, Tsinghua University, Beijing, China, and colleagues have studied how such topological defects interact with a high-energy electron beam. The team used a coherent electron nanobeam within a scanning transmission electron microscope (STEM) and recorded the far-field transmitted patterns after the beam passed through an edge of the (001) surface of NiO.


The team found that the edge defects could transform an electron plane wave into an electron vortex beam. Vortex beams have spiraling wavefronts. The amplitude and phase information of the vortex beam could be deduced through a combination of electron nanodiffraction and electron ptychography, a computational imaging method.


This approach could be used as a method for creating phase plates that can generate electron vortex beams with an angular separation that is three orders of magnitude larger than is currently possible using other nanofabrication methods. According to the researchers, it could also allow the recording of magnetic circular dichroism spectra with high spatial resolution.


 

Article Views: 1356

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH