Metal–Organic Framework Protects Frozen Red Blood Cells

  • Author:
  • Published: 04 May 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Journal of the American Chemical Society/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Metal–Organic Framework Protects Frozen Red Blood Cells

The formation of ice crystals is a major problem for the cryopreservation of cells and tissues. Existing methods to protect frozen cells require either toxic organic solvents or expensive antifreeze proteins. Some nanomaterials can mimic the effects of antifreeze proteins. Such materials need to combine the effective inhibition of ice recrystallization, low cost, ease of access, and biocompatibility.

Wei Zhu, C. Jeffrey Brinker, The University of New Mexico, Albuquerque, USA, and colleagues have developed water-stable zirconium-based metal−organic framework (MOF) nanoparticles for the cryopreservation of red blood cells. The team synthesized five different types of nanoparticles from the MOFs UiO-66, UiO66-NH2, UiO-66-OH, UiO-67, and MOF-808 using solvothermal methods. Then they tested the particles' cryoprotective properties and compatibility with red blood cells.

The researchers found that UiO-66-OH nanoparticles can be used as an effective cryoprotectant. The material's structure provides evenly spaced hydrogen donor groups, which can interact with water molecules and, thus, inhibit ice recrystallization and promote the melting of ice crystals. Up to 40 % of red blood cells could be recovered after cryopreservation using the nanoparticles, more than with existing commonly used cryoprotectants.


Article Views: 1637

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

Follow on Facebook Follow on Twitter Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH