Atomically Thin Metal Sulfides Synthesized

  • Author: ChemistryViews.org
  • Published: 24 July 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Journal of the American Chemical Society/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Atomically Thin Metal Sulfides Synthesized

Two-dimensional materials such as graphene often have different properties from the corresponding 3D bulk materials (i.e., graphite in the case of graphene). They can be useful, e.g., in high-performance materials, electronics, or catalysis. Often, 2D materials have a layered structure in their bulk form, which makes it comparatively easy to synthesize them, e.g., by splitting these layers.


Matthew C. Beard, National Renewable Energy Laboratory, Golden, CO, USA, and colleagues have used a colloidal synthesis based on a cation-exchange reaction to prepare atomically thin 2D ZnS, CdS, CoS2, and PbS. These compounds do not have a layered structure in the bulk, which makes their 2D forms more difficult to access.


The team used mono- and few-layer Ag2S as a precursor, stabilized by 3-mercaptopropionic acid (MPA) and 1-octanethiol (OT) ligands. A colloidal solution of this 2D Ag2S was then reacted with solutions of either zinc nitrate, cadmium nitrate, cobalt nitrate, or lead oleate to give the desired products via cation exchange. The material keeps its size, shape, and either single-layered or a few-layered nature during the reaction.


The optical properties of the resulting atomically thin metal sulfides (ATMS) are different from both the bulk material and from quantum dots (i.e., tiny 3D particles) made from the same compounds. This could lead to new applications. The ATMS have under-coordinated metal centers at the surface, which could make them highly active catalysts. According to the researchers, other 2D metal sulfides could be accessible via the same approach by choosing appropriate precursors and reaction conditions.


 

Article Views: 647

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH