Atom-Economical Mitsunobu Reaction Developed

  • Author: ChemistryViews.org
  • Published: 01 September 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Science/American Association for the Advancement of Science
thumbnail image: Atom-Economical Mitsunobu Reaction Developed

Alcohols are useful intermediates in organic chemistry. They can be converted to a variety of other functional groups using, e.g., nucleophilic substitution reactions (pictured). However, since OH is not a good leaving group, these substitution reactions need additional reactants to activate the alcohol. Approaches like the commonly used Mitsunobu reaction produce stoichiometric byproducts that result from this activation.


In a traditional Mitsunobu reaction, triphenylphosphine (PPh3) is used as a stoichiometric reagent and is oxidized to triphenylphosphine oxide (Ph3P=O). There have been efforts to recycle these byproducts by reducing them to give back the original reagents, but this, again, requires stoichiometric amounts of redox reagents and is not atom-economical overall.


Ross M. Denton, University of Nottingham, UK, and colleagues have developed a redox-neutral catalytic variant of the Mitsunobu reaction. The team developed a phosphine-oxide-based catalyst that is active in the Mitsunobu reaction without changing the oxidation state at phosphorus. This catalyst, (2-hydroxybenzyl)diphenylphosphine oxide, can be synthesized in two-steps on a multigram scale.


Under the reaction conditions, the catalyst is dehydrated and cyclized to give an oxyphosphonium ion. This ion can react with the alcohol in a ring-opening reaction and activate the alcohol for the nucleophilic substitution. The desired product is formed and the catalyst is regenerated. Since there is no redox chemistry involved in the process, there is no need for stoichiometric reductants or oxidants and the process is atom-economical—with water as the only byproduct. According to the researchers, this approach could also be useful for a range of other phosphorus-mediated reactions.


 

Article Views: 876

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH