Large-Scale Synthesis of Horse-Chestnut Leaf-Miner Pheromone

  • Author: Sarah Maier
  • Published: 30 June 2020
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Organic Process Research & Development/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Large-Scale Synthesis of Horse-Chestnut Leaf-Miner Pheromone

The horse-chestnut leaf miner is a moth species that causes serious damage to horse-chestnut trees in Europe. The use of pesticides to control this insect can also harm non-target species and pose dangers to human health. This is especially problematic in the case of horse-chestnut trees, because they are often grown in residential areas. The use of sex pheromones for pest control is a sustainable alternative to pesticides. Pheromones can be used to attract and/or trap the insects. The effects of these molecules are species-specific, and they are not dangerous to human health.

Eric Gayon, M2i Development, Lacq, Guillaume Lefèvre, Chimie ParisTech, PSL University, Paris, France, and colleagues have developed a scalable six-step synthesis route for the horse-chestnut leaf miner sex pheromone (8E,10Z)-tetradeca-8,10-dienal (pictured) with an overall yield of 40 %. The product was prepared in two parts, which were then coupled to form the C7–C8 linkage. The C1–C7-fragment was prepared from diethyl pimelate, which was reduced using sodium (bis(2-methoxyethoxy)aluminum hydride (Red-Al). The resulting diol was monochlorinated using aqueous hydrochloric acid in toluene and then converted to the corresponding Grignard reagent by addition of n-BuMgCl in THF. The second fragment, (1E-3Z)-dienol phosphate, was prepared from trans-hept-2-enal, which was first treated with t-BuOK and then reacted with diethyl chlorophosphite.

The two fragments were coupled in an iron-catalyzed Kumada coupling reaction, using the easily available and inexpensive iron complex Fe(acac)3. The resulting alcohol was oxidized to the desired aldehyde using iodobenzene diacetate in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) to give the pheromone in 90 % diastereomeric purity.

As an abundant metal with low toxicity, iron is more convenient and environmentally friendly for large-scale reactions than metals such as palladium and nickel that are more commonly used for C–C cross-couplings. The reaction proceeds without additional ligands or additives, which minimizes waste and makes the reaction safer and more cost-efficient. The researchers were able to synthesize 40 g of the pheromone in one batch. Due to the high effectiveness of the compound, this amount is sufficient for the treatment of an area of ca. 8 km2.



Article Views: 357

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH