Metal–Organic Framework with Record Acetylene Storage Density

  • Author: ChemistryViews
  • Published: 02 September 2021
  • Copyright: Wiley-VCH GmbH
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Metal–Organic Framework with Record Acetylene Storage Density

Metal–organic frameworks (MOFs) are composed of metal centers and organic linkers. Generally, MOFs are crystalline, porous materials. They are useful, e.g., in catalysis or gas separation. Acetylene (C2H2), for example, is a commonly used chemical feedstock. CO2 often is a byproduct of acetylene production, thus, efficient separation processes for C2H2/CO2 mixtures would be useful.

Yong Cui, Shanghai Jiao Tong University, China, Banglin Chen, University of Texas at San Antonio, USA, and colleagues have prepared two isostructural, chiral, nickel-based MOFs designed for efficient acetylene uptake and C2H2/CO2 separation, i.e., Ni2(L-asp)2(bpy), or "MOF-NH2", and Ni2(L-mal)2(bpy), or "MOF-OH". These MOFs were synthesized from either L-aspartic acid and nickel carbonate or L-malic acid and nickel acetate, respectively, which were combined with 4,4'-bipyridyl (bpy) in solvothermal reactions. The researchers point out that the MOFs are prepared from inexpensive compounds and the reaction is scalable up to kilograms.

The synthesized frameworks both form one-dimensional channels. The team investigated the adsorption behavior of MOF-NH2 and MOF-OH and found that acetylene is preferentially adsorbed in the MOFs' channels over carbon dioxide in both cases. MOF-OH, in particular, showed the highest acetylene storage density to date (0.81 g mL–1 at ambient conditions) and is stable in air and in water. Thus, the material could be useful for selective C2H2 adsorption and purification.



Article Views: 3248

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH