Better Lithium-Ion Batteries

Better Lithium-Ion Batteries

Author: ChemistryViews

Materials with high lithium storage capacity, such as silicon and tin based alloys, have potential applications as lithium battery anodes. But the large-volume change associated with lithiation and delithiation severely hinders practical employments.

Through a combination of advanced tools of material synthesis, spectroscopic analysis and theoretical simulations, a team of scientists around Gao Liu and Wanli Yang, US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), USA, developed a new conductive binder for solving this long-standing volume change problem in high capacity materials. A tailored polymer that conducts electricity binds closely to lithium-storing silicon particles, even as they expand to more than three times their volume during charging and shrink again during discharging.

A simple mixing of commercial Si particles with the binder forms a slurry, which can be coated into a porous electrode. The conductive polymer matrix is compatible with the lithium-ion slurry manufacturing process. The new kind of anode can absorb eight times the lithium of current designs. It has maintained its greatly increased energy capacity after over a year of testing and many hundreds of charge-discharge cycles.


Leave a Reply

Your email address will not be published.