Your Body Heat, Your Clothing, Your Electricity?

  • Author: Kate Lawrence
  • Published: 11 April 2013
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Energy Technology/Wiley-VCH
thumbnail image: Your Body Heat, Your Clothing, Your Electricity?

Thermoelectric materials have the ability to convert a temperature gradient into useful electricity. Temperature gradients provide an environmentally friendly and abundant energy resource. These gradients are commonly produced by a number of processes, for example combustion engines, home appliances, and the human body. This waste heat can be harnessed by using thermoelectric devices, which until now have generally contained heavy and expensive elements, and have proposed a number of toxicity issues.

Jaime Grunlan and his co-workers, Texas A&M University, College Station, USA, have been working towards creating fully organic and electrically conducting composites as an alternative to traditional inorganic thermoelectric devices. They have successfully produced carbon nanotube-based polymer nanocomposites that are dual-stabilized to ensure the efficient movement of charge carriers.

The optimized materials exhibit high electrical conductivities and thermo-power values that are superior to other polymer-based composites. The dual-stabilized system can be used to enhance the thermoelectric properties of other organic materials for harvesting waste heat, and has the potential to be used instead of traditional inorganic semiconductor materials in thermoelectric devices. This new, flexible material also highlights the possibility of harvesting waste heat from unexpected places, such as the fibers in clothing, and the ability to convert that heat into a voltage.

Article Views: 3586

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH