Molecular Three-step Shuffle

  • Author: Vikki Cantrill
  • Published: 23 July 2014
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Organic & Biomolecular Chemistry/RSC
  • Associated Societies: Royal Society of Chemistry (RSC), UK
thumbnail image: Molecular Three-step Shuffle

Rotaxanes and pseudorotaxanes attract much attention because they may be used to make promising molecular electronics, switches, and machines. Typically, a wheel component (rotaxane) is threaded onto an axle (carbon chain). Large stopper groups (simple bulky molecules) added to the ends of the axle then stop the wheel coming off. The axle often contains stations (molecular recognition sites) between which the wheel can shuttle. Although a number of methods to generate such systems exist, their synthesis is often challenging.

Chuan-Feng Chen and Zheng Meng from the Chinese Academy of Sciences, Beijing, China, have synthesized a shuttle with three stations in high yield (76 %), which works by simple addition of chemicals. The wheel (triptycene-derived pseudorotaxane) starts at station one (N-methyltriazolium), then addition of a simple salts (KPF6 followed by LiClO4) moves the wheel to station two (anthraquinone) and then onward to station three (pyromellitic diimide). Removal of the salts (by adding 18-crown-6) returns the wheel back to station one. These three-station systems show unidirectional motion and may be further developed into devices such as nano valves.


Article Views: 2011

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH