Improvement of Magnesium Sulfur Batteries

  • Author: Lisa-Marie Rauschendorfer
  • Published: 02 November 2014
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Advanced Energy Materials/Wiley-VCH
thumbnail image: Improvement of Magnesium Sulfur Batteries

The success of electric vehicles requires the development of safe, environmentally friendly, rechargeable batteries with a high energy density. Recently developed lithium sulfur batteries meet all these criteria due to their high energy density. However, limited lithium resources as well as unresolved safety issues hinder a commercial usage.


Magnesium is a promising alternative, as it overcomes the previously mentioned drawbacks and has a high theoretical energy density with a sulfur cathode. The problem here is to find a suitable electrolyte for sulfur magnesium (S/Mg) batteries, that is stable with the electrode materials and has a wide electrochemical window.


Maximilian Fichtner, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, and colleagues used hexamethyldisilazide (HMDS)2Mg-based diglyme and tetraglyme (HMDS = hexamethyldisilazide) as non-nucleophilic electrolyte solutions with an ionic liquid as an additive. This combination shows beneficial effects to the electrochemical conversion between Mg and S in Mg/S batteries and a high discharge potential of about 1.65 V was recorded for the first time.
However, a large hysteresis between charge and discharge is revealed, which indicates a quick fading in capacity and makes further improvement on Mg/S batteries necessary.


 

Article Views: 3538

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH