Improved Carbon Dioxide Capture

  • Author: Lisa-Marie Rauschendorfer
  • Published: 14 September 2015
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Advanced Energy Materials/Wiley-VCH
thumbnail image: Improved Carbon Dioxide Capture

Carbon dioxide is one of the major contributors to global warming. Hence, post-combustion capture of emitted CO2 and its long-term storage are an important task in order to restrict the CO2 amount in the atmosphere. Activated carbon, which is a pure form of carbon processed to have small pores and large surface area, is a promising material for efficient CO2 absorption.


As the CO2 uptake mainly results from short-range attractive forces, a narrow pore size with 6–7 Å maximizes CO2–carbon interaction. Unfortunately, this form of activated carbon has a reduced surface area, which constrains CO2 absorption. If higher activation levels are used in order to increase the surface area, the pore size expands – hence CO2 capture is reduced once again.


Robert Mokaya and colleagues, University of Nottingham, UK, addressed this conundrum between CO2 uptake, surface area and pore size. The team uses a mechanochemical activation route for the production of lowly compacted carbon from wood sawdust and lignin. The product exhibits an enhanced surface area, but mainly small pore sizes with 5.8–6.5 Å. The CO2 uptake rises from 4.3 mmol/g of conventional activated carbon to 5.8 mmol/g at 1 bar.


 

Article Views: 2270

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH