Protecting Artificial Leaves

  • Author: Lisa-Marie Rauschendorfer
  • Published: 03 April 2016
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Advanced Energy Materials/Wiley-VCH
thumbnail image: Protecting Artificial Leaves

The artificial production of hydrogen from sunlight and water by semiconducting absorbers is a promising approach to generate environmentally friendly energy. State-of-the-art semiconductors have a high photovoltage and photon-to-charge-carrier conversion efficiency, but still lack of durability due to their tendency to degradation and passivation in acidic electrolytes.

Anahita Azarpira, Helmholtz-Zentrum for Materials and Energy GmbH, Berlin, Germany, and colleagues addressed this problem by the addition of an ultrathin organic protection layer in a two-step fabrication scheme. Firstly, hydrogen-terminated n-type silicon electrodes were exposed to an ethanol/iodine electrolyte. Under cathodic conditions the ethanol is activated by the iodine and subsequently reacts with the H-terminated silicon surface. In a second step, partly hydrated RuO2 powder catalyses the polymerization of ethanol resulting in a protection layer formed by polymerized ethyl-groups. RuO2 then proceeds to its original task in silicon electrodes: to catalyze the splitting of water to hydrogen and oxygen.

The resulting mulit-layer photoanode shows high stability and surpasses existing benchmarks of the photovoltage.


 

Article Views: 1882

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH