Water Flows Across a Level Surface

  • Author: Nancy McGuire
  • Published: 31 August 2016
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Langmuir/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Water Flows Across a Level Surface

Microfluidic devices use chemical gradients to drive small amounts of liquid. Physical gradients can drive liquids as well: Stephanie Hiltl and Alexander Böker, Fraunhofer Institute for Applied Polymer Research, Potsdam-Golm, Germany, propelled water droplets across surfaces using interfacial energy imbalances between the droplets' leading and trailing edges.

The researchers made substrates with sine wave-shaped wrinkles by coating stretched poly(dimethylsiloxane) with rigid silica and allowing the strain to relax. Various preparation methods created wrinkles of constant size or gradient wrinkle patterns. Water droplets remained stationary on substrates that were flat or that had uniform wrinkles. Contact angles were greater on the wrinkled substrates, indicating less wetting.

Droplets jumped sideways as they made contact with wrinkle-gradient substrates, and then moved toward the smaller wrinkles. Contact angles were intermediate between those for the flat and the uniform-wrinkle substrates, but each droplet had a larger contact angle on the leading edge than on the trailing edge. As a droplet moved, its two contact angles decreased and became closer in size. The droplet's leading edge pinned to the substrate, freed itself, and pinned again. The trailing edge moved continuously.

The researchers foresee using wrinkled substrates for microfluidic devices, sensors, or transport systems for reagents or drugs.


Article Views: 1767

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)published by Wiley-VCH