New Coat for Golden Rods

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 12 December 2011
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: New Coat for Golden Rods

Related Articles

Fighting Cancer with Gold


Gold isn’t just lovely in jewelry; it has long been used as medicine. Modern medicine is particularly focused on nanoscopic gold, which can be used as a contrast agent and in the treatment of cancer. In the journal Angewandte Chemie, Eugene R. Zubarev and his team at Rice University in Houston, Texas, USA, have now introduced a new pretreatment process for gold nanorods that could accelerate their use in medical applications.


How can tiny rods of gold help to fight cancer? Cancer cells are more sensitive to temperature than healthy tissue, and this fact can be exploited through local heating of the affected parts of the body. This is where the gold nanorods come into play. They can be introduced into the cancer cells and the diseased areas irradiated with near-infrared light (photoinduced hyperthermia). The rods absorb this light very strongly and transform the light energy into heat, which they transfer to their surroundings.


Gold nanorods are normally produced in a concentrated solution of cetyl trimethylammonium bromide (CTAB) and are thus coated in a double layer of CTAB. The CTAB is only deposited onto the surface, not chemically bound. In an aqueous environment, the CTAB molecules slowly dissolve. This is problematic because CTAB is highly toxic. Simply leaving out the CTAB is no solution because without this coating the nanorods would clump together. In order to make the rods stable as well as biocompatible, various more or less complex methods of pretreatment have been developed. However, for many of these processes, it is not known how much of the toxic CTAB remains on the nanorods. Another problem is that the pretreatment can disrupt the uptake of the nanorods into cells, which drastically reduces the success of photothermal cancer treatment.


Replacing the CTAB Coat


Zubarev and his co-workers have now developed a new strategy that solves these problems: they replaced the CTAB with a variant that contains a sulfur-hydrogen group, abbreviated as MTAB. With various analytical processes, the scientists have been able to prove that the CTAB on these nanorods is completely replaced with an MTAB layer. The MTAB molecules chemically bond to gold nanorods through their sulfur atoms. They bind so tightly that the layer stays in place even in an aqueous solution and the rods can even be freeze-dried. They can be stored indefinitely as a brown powder and dissolve in water again within seconds.


Tests on cell cultures demonstrate that MTAB gold nanorods are not toxic, even at higher concentrations. In addition, they are absorbed in large amounts by tumor cells. The scientists estimate that under the conditions of their experiment, a single cell takes up more than two million nanorods. This would make effective photothermal tumor treatment possible.

Image: © Wiley-VCH


Article Views: 2089

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH