Triple Glow to Fight Counterfeiting

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 04 May 2016
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Triple Glow to Fight Counterfeiting


New Ink Against Counterfeiters

Banknotes, documents, branded products, and sensitive goods like pharmaceuticals or technical components are often marked to distinguish them from imitations. However, some counterfeiters have learned to copy conventional fluorescent tags. In the journal Angewandte Chemie, Chinese scientists have introduced a new anti-counterfeit ink made with carbon nanodots. Their ingenious composite material emits three different types of luminescence.


The team led by Hengwei Lin at the Ningbo Institute of Materials Technology & Engineering of Chinese Academy of Sciences, the University of Chongqing, and Southeast University in Nanjing, has successfully produced such a substance based on carbon nanodots – luminescent nanomaterials which have attracted much attention in recent years due to their unique optical properties and extremely low toxicity.



Carbon Nanodots with a Triple Glow

The researchers used a facile process to make carbon nanodots from m-phenylenediamine. These were then dispersed in water with polyvinyl alcohol and dispensed as ink from a gel pen onto a banknote and a document. After drying, the result was a transparent film of carbon nanodots in a polyvinyl alcohol matrix.


This film is colorless under ordinary light, but has three tricks up its sleeve: 1) Irradiation with a UV lamp (365 nm) causes the mark to emit blue light (photoluminescence); 2) the UV irradiation also results in a green afterglow that continues for several seconds after the UV lamp is switched off (room temperature phosphorescence); and 3) irradiation with an infrared femtosecond pulse laser (800 nm) induces a blue-green glow (two-photon luminescence).




Luminescence and Phosphorescence

Photoluminescence is a phenomenon that is widely observed. Irradiation with UV light catapults electrons into a higher energy level. As the electrons return to the ground state, a portion of the energy is re-emitted as visible light. Two-photon luminescence is a significantly less common phenomenon in which two electrons are absorbed simultaneously (in this case in the infrared range) and jumps to a higher level. From this higher level, the electron can return directly to the ground state by emitting light of a shorter wavelength (in the visible range).


Phosphorescence at room temperature is especially rare. It involves a delay in the release of the absorbed energy because quantum mechanically "forbidden" – and therefore unlikely – electronic transitions are involved. The scientists determined that nitrogen-containing groups on the surface of the carbon nanodots are critical to this observed phosphorescence. The embedding of the nanodots in the polyvinyl alcohol matrix is also important, because it inhibits intramolecular motion that works against the phosphorescence.


 

Article Views: 1311

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH