2010 Trends in Theoretical Chemistry

2010 Trends in Theoretical Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Theoretical Chemistry 2010

Tensor decompositions have an enormous potential for more efficient approximations in quantum chemistry. The challenge with QM/MM approaches today lies in treating the many degrees of freedom realistically. In quantum dynamics, universally applicable processes become less common in the light of a growing complexity of the investigated systems.

► Full article (in German):

All trend reports on ChemViews

Authors

Alexander Auer is research group leader (W2) of the “Atomistic Modeling Group” in the department of Interface Chemistry and Surface Technology (director: Martin Stratmann) at the Max Planck Institute of Iron Research in Düsseldorf, Germany. Auer studied Chemistry at the University of Cologne. Following a semester abroad with Trygve U. Helgaker at the University of Oslo, Finland, he did his PhD in 2002 on coupled cluster computation of NMR parameters under the supervision of Jürgen Gauß at the University of Mainz, Germany. From 2002 to 2004 he worked as a post-doc for Marcel Nooijen in Princeton, USA, and Waterloo, Canada. In April 2004 he took up a junior professorship in theoretical chemistry at the Technical University of Chemnitz, Germany, where he now is honorary professor for computer assisted quantum chemistry since March 2010.

His research interests are the application and development of coupled cluster methods and algorithms as well as the application of standard procedures for answers to questions in material sciences and electrochemistry.

Johannes Kästner, born 1978, is a junior professor at the institute of theoretical chemistry of the University of Stuttgart, Germany. He studied technical chemistry at the Technical University of Vienna, Austria, and in 2004 did his PhD in theoretical physics under Peter E. Blöchl. Thereafter, he switched to the field of quantum chemistry and specialized in QM/MM. After a post-doc stay with Walter Thiel at the Max Planck Institute für Kohlenforschung, there followed a position as staff scientist at the Daresbury Laboratory, UK.

He has developed methods for geometry optimization, MD sampling and computation of tunnel rates and with them investigates biochemical systems with QM/MM methods.


Irene Burghardt
, born 1964, has been the director of research (CNRS) at the Ecole Normale Supérieure (ENS) in Paris, France, since 2007. She studied chemistry at the University of Bonn, Germany, did her diploma thesis at the University of Oxford, UK, and her PhD 1992 at the University of Lausanne, Switzerland. As a EU-and NATO fellow, she worked from 1992 to 1995 with Pierre Gaspard at the Free University of Brussels, Belguim. Following research stays in Germany at Bernd Hess in Bonn (1996-97) and Lorenz Cederbaum in Heidelberg (1998), she took up a research position as Chargée de Recherche at the French CNRS in 1999 and has been working for the ENS Paris ever since. She habilitated in 2006 at the University of Paris VI and 2007 at the University of Heidelberg. In 2010, she was offered a chair by the University of Frankfurt.

Her research interests are directed at the description of elementary dynamic processes in complex molecular systems and methodical developments in the area of quantum dynamics and quantum classics.

References

Tensor Decompositios

1) S. F.Boys, I. Shavitt, Wisconsin Report, 1959, WIS-AF-13.
2) E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 4.
3) O. Vahtras, J. Almlöf, M. W. Feyereisen, Chem. Phys. Lett. 1993, 213, 514. Link
4) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283. Link
5) H.-J. Werner, F. R. Manby, P. J. Knowles, J. Chem. Phys. 2003, 118, 8149. Link
6) R. Polly, H.-J. Werner, F. R. Manby, P. J. Knowles, Mol. Phys. 2004, 21–22, 2311. Link
7) W. Klopper, F. R. Manby, S. Ten-no, E. F. Valeev, Int. Rev. Phys. Chem. 2006, 25, 427. Link
8) H.-J. Werner, T. B. Adler, G. Knizia, F. R. Manby, in Recent Progress in Coupled Cluster Methods [Hrsg.: P. Čársky, J. Paldus, J. Pittner], Springer, New York, 2010.
9) M. Häser, J. Almlöf, J. Chem. Phys. 1992, 96, 489. Link
10) N. F. S. Beebe, J. Lindenberg, Int. J. Quantum Chem. 1977, 12, 683. Link
11) H. Koch, A. Sánchez de Merás, J. Chem. Phys. 2000, 113, 508. Link
12) F. Weigend, M. Kattanneck, R. Ahlrichs, J. Chem. Phys. 2009, 130, 164106. Link
13) H. Eshuis, J. Yarkony, F. Furche, J. Chem. Phys. 2010, 132, 234114. Link
14) T. Shiozaki, S. Hirata, J. Chem. Phys. 2010, 132, 151101. Link
15) J. J. Fernandez, C. Kollmar, M. Filatov, Phys. Rev. A. 2010, 82, 022508. Link
16) T. S. Chwee, E. A. Carter, J. Chem. Phys. 2010, 132, 074104. Link
17) B. Doser, J. Zienau, L. Clin, D. S. Lambrecht, C. Ochsenfeld, Z. Phys. Chem. 2010, 224, 397.
18) J. Boström, M. G. Delcey, F. Aquilante, L. Serrano-Andrés,T. B. Pedersen, R. Lindh, J. Chem. Theory Comput. 2010, 6,  747. Link
19) A. M. Burow, M. Sierka, F. Mohamed, J. Chem. Phys. 2009, 131, 214101. Link
20) E. G. Hohenstein, C. D. Sherrill, J. Chem. Phys. 2010, 132, 184111. Link
21) S. Kossmann, F. Neese, J. Chem. Theory Comput. 2010, 6, 2325. Link
22) Y. Okiyama, T. Nakano, K. Yamashita, Y. Mochizuki, N. Taguchi, S. Tanaka, Chem. Phys. Lett. 2010, 490, 84. Link
23) D. Ganyushin, N. Gilka, P. R. Taylor, C. M. Marian, F. Neese, J. Chem. Phys. 2010, 132, 144111. Link
24) R. Send, F. Furche, J. Chem. Phys. 2010, 132, 044107. Link
25) S. Loibl, F. R. Manby, M. Schütz, Mol. Phys. 2010, 108, 477. Link
26) F. Neese, A. Hansen, D. G. Liakos, J. Chem. Phys. 2009, 131, 064103. Link
27) P. Meogrády, M. Pitoňák, M. Urban, Mol. Phys. 2005, 103, 2141. Link
28) T. Kinoshita, O. Hino, R. Bartlett, J. Chem. Phys. 2003, 119, 7756. Link
29) T. G. Kolda, B. W. Bader, SIAM Review, Siam Publications, 2009, 51, 455.
30) S. R. Chinnamsetty, M. Espig, B. N. Khoromskij, W. Hackbusch, H. J. Flad, J. Chem. Phys. 2007, 127, 084110. Link
31) M. Espig, L. Grasedyck, W. Hackbusch, Constr. Approx. 2009, 30, 557. Link
32) W. Hackbusch, S. Kuhn, J. Fourier Anal. Appl. Birkhauser Boston Inc, 2009, 15, 706. Link
33) W. Hackbusch, B. Khoromskij, J. Complex. 2007, 23, 697. Link
34) M. Espig, Doktorarbeit, 2008, Universität Leipzig.
35) U. Benedikt, A. A. Auer, M. Espig, W. Hackbusch, J. Chem. Phys. 2011, 134, 054118. Link
36) S. Rommer, S. Östlund, Phys. Rev. B 1997, 55, 2164. Link
37) G. K.-L. Chan, J. J. Dorando, D. Ghosch, J. Hachmann, E. Neuscamman, H. Wang, T. Yanai, Prog. Theor. Chem. Phys.  2008, 18, 49. Link

Quantum Mechanical and Empirical Force

1) A. Warshel, M. Levitt, J. Mol. Biol. 1976, 103, 227. Link
2) J. Sauer, M. Sierka, J. Comput. Chem. 2000, 21, 1470. Link
3) J. Garrrec, P. Fleurat Lessard, M. Cascella, U. Röthlisberger, J. Chem. Theory Comput. 2010, 6, 1369. Link
4) C. Rusu, H. Lanig, T. Clark, C. Kryschi, J. Phys. Chem. B 2008, 112, 2445. Link
5) M. Sundararajan, C. Riplinger, M. Orio, F. Wennmohs, F. Neese, Encyc. Inorg. Chem. 2009, in print.
6) M. Mladenovic, K. Junold, R. F. Fink, W. Thiel, T. Schirmeister, B. Engels, J. Phys. Chem. B 2008, 112, 5458. Link
7) H. M. Senn, W. Thiel, Top. Curr. Chem. 2007, 268, 173. Link
8) K. Nam, J. Gao, D.M. York, J. Chem. Theory Comput. 2005, 1, 2. Link
9) P. Schaefer, D. Riccardi, Q. Cui, J. Chem. Phys. 2005, 123, 014905. Link
10) T. Benighaus, W. Thiel, J. Chem. Theory Comput. 2009, 5, 3114. Link
11) V. Moliner, A.J. Turner, I. H. Williams, Chem. Commun. 1997, 14, 1271. Link
12) T. Vreven, K. Morokuma, Ö. Farkas, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 2003, 24, 24760. Link
13) Y. Zhang, H. Liu, W. Yang, J. Chem. Phys. 2000, 112, 3483. Link
14) J. Kästner, S. Thiel, H.-M. Senn, P. Sherwood, W. Thiel, J. Chem. Theory Comput. 2007, 3, 1064. Link
15) T.K. Woo, P. Margl, P.E. Blöchl, T. Ziegler, J. Chem. Phys. A 2002, 106, 1173. Link
16) M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory Comput. 2009, 5, 3010. Link
17) J. Kästner, H.-M. Senn, S. Thiel, N. Otte, W. Thiel, J. Chem. Theory Comput. 2006, 2, 452. Link
18) C. V. Sumowski, B. B. T. Schmitt, S. Schweizer, C. Ochsenfeld, Angew. Chem. 2010, 122, 10147. Link
19) C. Pfisterer, A. Gruia, S. Fischer, J. Biol. Chem. 2009, 284, 13562. Link
20) K. Sadeghian, M. Bocola, T. Merz, M. Schütz, J. Am. Chem. Soc. 2010, 132, 16285. Link
21) R. Gutierrez, G. Cuniberti, R. Caetano, B. Woiczikowski, T. Kubar, M. Elstner, New J. Phys. 2010, 12, 023022. Link
22) S. Salzmann, M.R. Silva-Junior, W. Thiel, C. Marian, J. Phys. Chem. B 2009, 113, 15610. Link
23) T. Brakemann, G. Weber, M. Andresen, G. Groenhof, A. C. Stiel, S. Trowitzsch, C. Eggeling, H. Grubmüller, S. W. Hell,
M. C. Wahl, S. Jakobs, J. Biol. Chem. 2010, 285, 14603. Link
24) F. Claeyssens, J.N. Harvey, F. R. Manby, R. A. Mata, A. J. Mulholland, K. E. Ranaghan, M. Schütz, S. Thiel, W. Thiel, H.-J. Werner, Angew. Chem. 2006, 118, 7010. Link
25) T. P. M. Goumans, C. R. A. Catlow, W. A. Brown, J. Chem. Phys. 2008, 128, 134709. Link
26) R. Lonsdale, J.N. Harvey, A.J. Mulholland, J. Phys. Chem. B 2010, 114, 1156. Link
27) J. Kästner, P. Sherwood, Mol. Phys. 2010, 108, 293. Link

Developments in Quantum Dynamics

1) E. J. Heller, J. Chem. Phys. 1975, 62, 1544. Link
2) R. Kosloff, J. Phys. Chem. 1988, 92, 2087. Link
3) a) O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. 2007, 46, 6918. Link; b) A. Viel, M. D. Coutinho-Neto, U. Manthe, J. Chem. Phys. 2007, 126, 024308. Link
4) H. Wang, M. Thoss, J. Chem. Phys. 2003, 119, 1289; ibid. 2006, 124, 034114. Link
5) H. Lee, Y.-C. Cheng, G. Fleming, Science 2007, 316, 1462. Link
6) E. Collini,G. D. Scholes, Science 2009, 323, 369. Link
7) a) H.-D. Meyer, U. Manthe, L. S. Cederbaum, Chem. Phys. Lett. 1990, 165, 73. Link; b) M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, Phys. Rep. 2000, 324, 1. Link
8) H. Tamura, J. G. S. Ramon, E. R. Bittner, I. Burghardt, Phys. Rev. Lett. 2008, 100, 107402. Link
9) U. Manthe, J. Chem. Phys. 2009, 130, 054109. Link
10) a) I. Burghardt, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys. 1999, 111, 2927. Link; b) G. A. Worth, H.-D. Meyer, H. Köppel, L. S. Cederbaum, I. Burghardt, Int. Rev. Phys. Chem. 2008, 27, 569. Link
11) a) D. V. Shalashilin, M. S. Child, Chem. Phys. 2006, 322, 127; b) D. V. Shalashilin, J. Chem. Phys. 2010, 132, 244111. Link
12) a) T. J. Martínez, M. Ben-Nun, R.D. Levine, J. Chem. Phys. 1996, 100, 7884. Link; b) B. G. Levine, T. J. Martínez, Ann. Rev. Phys. Chem. 2007, 58, 613. Link
13) G. A. Worth, M. A. Robb, B. Lasorne, Mol. Phys. 2008, 106, 20772. Link
14) J. C. Tully, J. Chem. Phys. 1990, 93, 1060. Link
15) M. Boggio-Pasqua, M. A. Robb, G. Groenhof, J. Am. Chem. Soc. 2009, 131, 13580. Link
16) M. J. Bedard-Hearn, F. Sterpone, P. J. Rossky, J. Phys. Chem. A 2010, 114, 7661. Link
17) a) R. Kapral, G. Ciccotti, J. Chem. Phys. 1999, 110, 8919. Link; b) R. Grunwald, R. Kapral, J. Chem. Phys. 2007, 126, 114109. Link
18) R. E. Wyatt, Quantum Dynamics with Trajectories, Springer Interdisciplinary Applied Mathematics Series, Vol. 18, Springer, New York, 2005.
19) a) D. Wang, L. Chen, R. Zheng, L. Wang, Q. Shi, J. Chem. Phys. 2010, 132, 081101. Link; b) M. Schröder, M. Schreiber, U.  Kleinekathöfer, J. Chem. Phys. 2007, 126, 114102. Link
20) R. Martinazzo, B. Vacchini, K. H. Hughes, I. Burghardt, J. Chem. Phys. 2011, 134, 011101. Link
21) L. S. Cederbaum, E. Gindensperger, I. Burghardt, Phys. Rev. Lett. 2005, 94, 113003. Link
22) D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, Cambridge, 2009.
23) a) C. F. Craig, W. R. Duncan, O. V. Prezhdo, Phys. Rev. Lett. 2005, 95, 163001. Link; b) S. A. Perara, P. M. McLaurin, T. V. Grimes, J. A. Morales, Chem. Phys. Lett. 2010, 496, 188. Link
24) T. Klamroth, M. Nest, Phys. Chem. Chem. Phys. 2009, 11, 349. Link
25) P. Peumans, S. Uchida, S. R. Forrest, Nature 2003, 425, 158. Link

Leave a Reply

Your email address will not be published.