Rational Design of Bimetallic Catalysts

  • ChemPubSoc Europe Logo
  • Author: ChemPhysChem
  • Published Date: 26 July 2019
  • Source / Publisher: ChemPhysChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Rational Design of Bimetallic Catalysts

Related Societies

Combining platinum with other metals is an effective way to tune its catalytic performance. However, the rational design of bimetallic catalysts to tailor their selectivity is challenging.


Chaoquan Hu, Chinese Academy of Sciences, Beijing, Qingshan Zhu, University of the Chinese Academy of Sciences, Beijing, Ding Ma, Peking University, Beijing, China, and colleagues have developed a process to rationally design platinum-based alloys that can inhibit the over-hydrogenation of butadiene. Butadiene hydrogenation on Pt particles has four products: 1‐butene and trans‐/cis2‐butene from partial hydrogenation, and n‐butane from complete hydrogenation. Alloying Pt with another metal can significantly change the product distribution.


The team developed a model consisting of isolated single heteroatoms embedded into platinum (pictured), which they used for rational screening using density functional theory (DFT) calculations. They found that the diffusion of H atoms adsorbed on the platinum (111) surface towards the C=C bond is a key step for controlling over-hydrogenation. A second hydrogenation can be inhibited by alloying Pt with Ag, Au, Zn, and Sn. These metals increase the diffusion barrier for hydrogen atoms.


The team tested several platinum-based catalysts—pure Pt and PtM (M=Ru, Zn, Ag)—and found that the theoretical results were consistent with experimental observations. The researchers are now studying hydrogen migration as a function of several reaction conditions, such as pressure and temperature, for further catalyst design.


 

 

Article Views: 720

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH