Gram-Scale Synthesis of a Hexapeptide in a Ball Mill

  • Author: European Journal of Organic Chemistry
  • Published Date: 06 September 2021
  • Copyright: Wiley-VCH GmbH
thumbnail image: Gram-Scale Synthesis of a Hexapeptide in a Ball Mill

Related Societies

The chemical synthesis of longer peptide chains can be challenging and often requires large amounts of harmful solvents such as dimethylformamide (DMF). Solventless methods could help to alleviate this problem and reduce waste. The use of ball mills, a technique widely employed in mechanochemistry, enables a very efficient mixing of reactants that can allow a reduction in the use of harmful chemicals.

Thomas-Xavier Métro, University of Montpellier, France, and colleagues have synthesized the longest peptide chain with a precisely controlled amino acid sequence made in a ball mill to date: the hexapeptide Boc-(Ala-Phe-Gly)2-OBn (pictured), produced in an amount of 1.7 g in five linear steps with an overall yield of 77 % (Boc = tert-butyloxycarbonyl, Bn = benzyl). The team used a fragment coupling approach via an Ala-Phe-Gly monomer.

They started from Boc-protected phenylalanine, which was reacted with a benzyl-protected glycine in a vibratory ball mill in the presence of ethyl cyanohydroxyiminoacetate (oxyma), NaH2PO4, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDCI), and EtOAc as a liquid additive to give the dipeptide Boc-Phe-Gly-OBn. The amine was deprotected and the dipeptide was coupled with Boc-protected alanine under the same conditions to give Boc-Ala-Phe-Gly-OBn. Finally, another deprotection step at the amino group allowed a coupling with Boc-Ala-Phe-Gly-OH in the ball mill to give the desired hexapeptide.



Article Views: 2316

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH