Stable Iron Nanoparticles as Contrast Agents

  • ChemPubSoc Europe Logo
  • Author: ChemPlusChem
  • Published Date: 20 February 2012
  • Source / Publisher: ChemPlusChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Stable Iron Nanoparticles as Contrast Agents

Related Societies

Biocompatible nanoparticles that exhibit a high magnetic moment have potential uses for a variety of biomedical applications such as targeted drug delivery, hyperthermia, and MRI contrast enhancement. Owing to the reactive nature of iron with water and oxygen, the preparation of stable iron nanoparticles is highly challenging. As iron has a much higher saturation magnetization than iron oxide, it is desirable to retain the iron core for better magnetic performance.

Richard Tilley and co-workers, Victoria University of Wellington, New Zealand, report an elegant synthesis of monodisperse biocompatible core/shell nanoparticles, which have an iron core with high saturation magnetization and a shell of iron oxide. In the presence of excess stabilizer, the synthesized particles are resistant to oxidation over time and their magnetic properties are preserved. The authors used Mössbauer spectroscopy to identify the iron oxide species present in the shell layer as principally γ-Fe2O3.

These core/shell nanoparticles (pictured) were used as cellular magnetic resonance imaging contrast agents and exhibited enhancement compared to iron oxide nanoparticles with similar cytotoxicity. This outcome means that these particles are promising candidates for biomedical applications.

Image: © Wiley-VCH

This article is available for free as part of the ChemPlusChem free trial.

Article Views: 4603

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH