2011 Trends in Macromolecular Chemistry

2011 Trends in Macromolecular Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Macromolecular Chemistry 2011

J. Groll, K. Müllen, A. Walther, C. Sinkel, R. Loos, M. Yamamoto, A. Künkel, F. Schnieders

  • The self-organization of functional polymers can be controlled more precisely.
  • The main applications of functional macromolecules remain electronics and biomedicines.

► Full article (in German):

All 2011 trend reports on ChemViews

Authors

Jürgen GrollJürgen Groll, born 1976, studied chemistry at the University of Ulm, and received his Ph.D. at the RWTH Aachen, both Germany, in 2004. After that, he spent four years at SusTech in Darmstadt, Germany. At the same time, he established a Working Group at the DWI, at the RWTH Aachen. Since August 2010, he has been the Chair of Functional Materials of Medicine and Dentistry at the University of Würzburg, Germany.

His research interests include bio-active surfaces, individualized implants, biomimetic 3D cell-support, hierarchical biomaterials, injectable materials for in situ tissue engineering, and drug-delivery systems.

Klaus MüllenKlaus Müllen, born 1947, studied chemistry at the University of Cologne, Germany, and received his doctorate in 1972 at the University of Basel, Switzerland. He received his Habilitation in 1977. In 1979, he was appointed a Professor at the Institute of Organic Chemistry at the University of Cologne and took up a call to the Chair of Organic Chemistry at the University of Mainz, Germany, in 1983. In 1989, he joined the Max Planck Society as a director at the Max Planck Institute for Polymer Research in Mainz, Germany.

His research interests include synthetic macro- and supramolecular chemistry and materials science with an emphasis on graphene, conjugated polymers and dendrimers, pigments, and hybrid materials. Between 2008 and 2009, he was President of the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society) and he has been the Vice President of the Gesellschaft Deutscher Naturforscher und Ärzte (GDNÄ, German Society of Scientists and Doctors) since 2011.

Andreas WaltherAndreas Walther, born 1980, studied polymer and colloid chemistry and macromolecular science at the University of Bayreuth, Germany, where he earned his Ph.D. in the field of Janus and multicomponnt particles. During a two-year postdoctoral stay at Aalto University, Helsinki, Finland, in Applied Physics, he became interested in biomimetic materials. Currently, he has established a research group at DWI at the RWTH Aachen University, Germany, with the goal of obtaining his Habilitation.

His research interests include the bioinspired design of materials through the hierarchical self-organization of complex colloids. In recent years, he has received various awards, including the Reimund Stadler Young Scientist Award, the Bayer Early Excellence in Science Award, and the DSM Science and Technology Award.

References

1) J. P. Blinco, V. Trouillet, M. Bruns et al. Adv. Mater. 2011, 23, 4435–4439. DOI: 10.1002/adma.201102875
2) J. N. Brantley, K. M. Wiggins, C. W. Bielawski, Science 2011, 333, 1606–1609. DOI: 10.1126/science.1207934
3) K. Kempe, R. Hoogenboom, M. Jaeger, U. S. Schubert, Macromolecules 2011, 44, 6424–6432. DOI: 10.1021/ma201385k
4) J. Zhao, H. Schlaad, Macromolecules 2011, 44, 5861–5864. DOI: 10.1021/ma2012392
5) a) B. Obermeier, F. Wurm, C. Mangold, H. Frey, Angew. Chem. 2011, 123, 8136–8146. DOI: 10.1002/ange.201100027; b) C. Mangold, B. Obermeier, F. Wurm, H. Frey, Macromol. Chem. Rapid Commun. 2011, 32, 1930–1934. DOI: 10.1002/marc.201100489
6) D. Steinhilber, S. Seiffert, J. A. Heyman et al., Biomaterials 2011, 32, 1311–1316. DOI: 10.1016/j.biomaterials.2010.10.010
7) S. J. Sigg, F. Seidi, K. Renggli et. al., Macromol. Chem. Rapid Commun. 2011, 32, 1710–1715. DOI: 10.1002/marc.201100349
8) S. Glatzel, A. Laschewsky, J.-F. Lutz, Macromolecules 2010, 44, 413–415.
9) P. Schattling, F. D. Jochum, P. Theato, Chem. Commun. 2011, 47 , 8859–8861. DOI: 10.1039/c1cc12652k
10) J. Bünsow, J. Erath, P. M. Biesheuvel, A. Fery, W. T. S. Huck, Angew. Chem. 2011, 123, 9803–9806. DOI: 10.1002/ange.201102560
11) C. N. Rochette, S. Rosenfeldt, K. Henzler et al., Macromolecules 2011, 44, 4845–4851. DOI: 10.1021/ma2003213
12) M. J. N. Junk, W. Li, A. D. Schlüter et al., J. Am. Chem. Soc. 2011, 133, 10832–10838. DOI: 10.1021/ja201217d
13) B. V. K. J. Schmidt, N. Fechler, J. Falkenhagen, J.-F. Lutz, Nat. Chem. 2011, 3, 234–238. DOI: 10.1038/nchem.964
14) N. Sugai, H. Heguri, T. Yamamoto, Y. Tezuka, J. Am. Chem. Soc. 2011, 133, 19694–19697. DOI: 10.1021/ja209394m
15) T. Mes, R. van der Weegen, A. R. A. Palmans, E. W. Meijer, Angew. Chem. 2011, 123, 5191–5195. DOI: 10.1002/ange.201100104
16) T. Terashima, T. Mes, T. F. A. De Greef, J. Am. Chem. Soc. 2011, 133, 4742–4745. DOI: 10.1021/ja2004494
17) B. Zhang, R. Wepf, K. Fischer et al., Angew. Chem. 2011, 123, 763–766. DOI: 10.1002/ange.201005164
18) D. Kurzbach, D. R. Kattnig, B. Zhang, A. D. Schlueter, D. Hinderberger, J. Phys. Chem. Lett. 2011, 2, 1583–1587. DOI: 10.1021/jz200653k
19) N. Weber, B. Tiersch, M. M. Unterlass, A. Heilig, K. Tauer, Macromol. Chem. Rapid Commun. 2011, 32, 1925–1929. DOI: 10.1002/marc.201100491
20) I. Y. Perevyazko, J. T. Delaney, A. Vollrath et al., Soft Matter 2011, 7, 5030–5035. DOI: 10.1039/c1sm05079f
21) J. Majoinen, A. Walther, J. R. McKee et al., Biomacromolecules 2011, 12, 2997–3006. DOI: 10.1021/bm200613y
22) R. A. Pavlick, S. Sengupta, T. McFadden, H. Zhang, A. Sen, Angew. Chem. 2011, 123, 9546–9549. DOI: 10.1002/ange.201103565
23) J. Yuan, S. Soll, M. Drechsler, A. H. E. Mueller, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 17556–17559. DOI: 10.1021/ja207080j
24) R. I. Kühnle, H. G. Börner, Angew. Chem. 2011, 123, 4592–4595. DOI: 10.1002/ange.201100141
25) R. I. Kühnle, D. Gebauer, H. G. Börner, Soft Matter 2011, 7, 9616–9619. DOI: 10.1039/c1sm05625e
26) C. V. Synatschke, F. H. Schacher, F. H. M. Fortsch, M. Drechsler, A. H. E. Muller, Soft Matter 2011, 7, 1714–1725. DOI: 10.1039/c0sm01195a
27) S. Fischer, A. Exner, K. Zielske et al., Proc. Natl. Acad. Sci. U.S.A. 2011.
28) a) N. C. Mougin, P. van Rijn, H. Park, A. H. E. Müller, A. Böker, Adv. Funct. Mater. 2011, 21, 2470–2476. DOI: 10.1002/adfm.201002315; b) P. van Rijn, N. C. Mougin, D. Franke, H. Park, A. Böker, Chem. Commun. 2011, 47, 8376–8378. DOI: 10.1039/c1cc12005k
29) M. Fritzsche, A. Bohle, D. Dudenko et al., Angew. Chem. 2011, 123, 3086–3089. DOI: 10.1002/ange.201007437
30) D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Science 2011, 334, 965–968. DOI: 10.1126/science.1212648
31) S. Bokern, Z. Fan, C. Mattheis, A. Greiner, S. Agarwal, Macromolecules 2011, 44, 5036–5042. DOI: 10.1021/ma200738b
32) S. H. Stelzig, C. Menneking, M. S. Hoffmann et al., Eur. Polym. J. 2011, 47, 662–667. DOI: 10.1016/j.eurpolymj.2010.10.018
33) N. Du, H. B. Park, G. P. Robertson et al., Nat. Mater. 2011, 10, 372–375. DOI: 10.1038/nmat2989
34) J. Jeromenok, W. Böhlmann, M. Antonietti, J. Weber, Macromol. Chem. Rapid Commun. 2011, 32, 1846–1851. DOI: 10.1002/marc.201100532
35) V. Atanasov, J. Kerres, Macromolecules 2011, 44, 6416–6423. DOI: 10.1021/ma2011574
36) L. Jimenez-Garcia, A. Kaltbeitzel, V. Enkelmann et al., Adv. Funct. Mater. 2011, 21, 2216–2224. DOI: 10.1002/adfm.201002357
37) K.-D. Kreuer, A. Wohlfarth, C. C. de Araujo, A. Fuchs, J. Maier, ChemPhysChem 2011, 12, 2558–2560. DOI: 10.1002/cphc.201100506
38) J.-K. Lee, M. C. Gwinner, R. Berger et al., J. Am. Chem. Soc. 2011, 133, 9949–9951. DOI: 10.1021/ja201485p
39) X.-R. Zhang, L. J. Richter, D. M. DeLongchamp et al., J. Am. Chem. Soc. 2011, 133, 15073–15084. DOI: 10.1021/ja204515s
40) H. Bronstein, Z. Chen, R. S. Ashraf et al., J. Am. Chem. Soc. 2011, 133, 3272–3275. DOI: 10.1021/ja110619k
41) H.-N. Tsao, D. M. Cho, I.-S. Park et al., J. Am. Chem. Soc. 2011, 133, 2605–2612. DOI: 10.1021/ja108861q
42) T. Okamoto, Y. Jiang, H. A. Becerril et al., J. Mater. Chem. 2011, 21, 7078–7081. DOI: 10.1039/C1JM10643K
43) S. Huettner, M. Sommer, J. Hodgkiss et al., ACS Nano 2011, 5, 3506–3515. DOI: 10.1021/nn200647d
44) J. H. Seo, E. B. Namdas, A. Gutacker, A. J. Heeger, G. C. Bazan, Adv. Funct. Mater. 2011, 21, 3667–3672. DOI: 10.1002/adfm.201100682
45) S. C. Rasmussen, R. L. Schwiderski, M. E. Mulholland, Chem. Commun. 2011, 47, 11394–11410. DOI: 10.1039/c1cc12754c
46) P. Li, O. Fenwick, S. Yilmaz et al., Chem. Commun. 2011, 47, 8820–8822. DOI: 10.1039/C1CC12752G
47) D. Kim, V. Coropceanu, J.-L. Bredas, J. Am. Chem. Soc. 2011, 133, 17895–17900. DOI: 10.1021/ja207554h
48) H. Sasabe, J. Kido, Chem. Mater. 2011, 23, 621–630. DOI: 10.1021/cm1024052
49) T.-S. Qin, W. Wiedemair, S. Nau et al., J. Am. Chem. Soc. 2011, 133, 1301–1303. DOI: 10.1021/ja109734e
50) H. C. Hesse, J. Weickert, C. Hundschell et al., Adv. Energy Mater. 2011, 1, 861–869. DOI: 10.1002/aenm.201100211
51) A. Teichler, R. Eckardt, S. Hoeppener et al., Adv. Energy Mater. 2011, 1, 105–114. DOI: 10.1002/aenm.201000027
52) J. H. Seo, A. Gutacker, Y. Sun et al., J. Am. Chem. Soc. 2011, 133, 8416–8419. DOI: 10.1021/ja2037673
53) S. Haid, A. Mishra, C. Uhrich, M. Pfeiffer, P. Bauerle, Chem. Mater. 2011, 23, 4435–4444. DOI: 10.1021/cm201392c
54) a) J. M. Englert, C. Dotzer, G. Yang et al., Nat. Chem. 2011, 3, 279–286. DOI: 10.1038/nchem.1010; b) J. M. Englert, A. Hirsch, X. Feng, K. Müllen, Angew. Chem. 2011, 123, A17.
55) L. Doessel, L. Gherghel, X. Feng, K. Muellen, Angew. Chem. 2011, 123, 2588–2591. DOI: 10.1002/ange.201006593
56) A. Chuvilin, E. Bichoutskaia, M. C. Gimenez-Lopez et al., Nat. Mater. 2011, 10, 687–692. DOI: 10.1038/nmat3082
57) M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, L. Porte, J. Am. Chem. Soc. 2011, 133, 1203–1205. DOI: 10.1021/ja108628r
58) M. Barz, R. Luxenhofer, R. Zentel, M. J. Vicent, Poly. Chem. 2011, 2, 1900–1918. DOI: 10.1039/c0py00406e
59) a) M. Weinhart, D. Gröger, S. Enders, J. Dernedde, R. Haag, Biomacromolecules 2011, 12, 2502–2511. DOI: 10.1021/bm200250f; b) I. Papp, C. Sieben, A. L. Sisson et al., ChemBioChem 2011, 12, 887–895. DOI: 10.1002/cbic.201000776
60) M. Maier, N. Kotman, C. Friedrichs et al., Macromolecules 2011, 44, 6258–6267. DOI: 10.1021/ma201149b
61) M. Hemmelmann, C. Knoth, U. Schmitt et al., Macromol. Rapid Commun. 2011, 32, 712–717. DOI: 10.1002/marc.201000810
62) C. Fetsch, A. Grossmann, L. Holz, J. F. Nawroth, R. Luxenhofer, Macromolecules 2011, 44, 6746–6758. DOI: 10.1021/ma201015y
63) T. Stöhr, A. R. Blaudszun, U. Steinfeld, G. Wenz, Polym. Chem. 2011, 2, 2239–2248. DOI: 10.1039/c1py00187f
64) O. Jazkewitsch, A. Mondrzyk, R. Staffel, H. Ritter, Macromolecules 2011, 44, 1365–1371. DOI: 10.1021/ma1027627
65) A. Lammel, M. Schwab, M. Hofer, G. Winter, T. Scheibel, Biomaterials 2011, 32, 2233–2240. DOI: 10.1016/j.biomaterials.2010.11.060

Image: © Wiley-VCH

Leave a Reply

Kindly review our community guidelines before leaving a comment.

Your email address will not be published. Required fields are marked *