2012 Trends in Biochemistry

2012 Trends in Biochemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Biochemistry 2012

C. Hackenberger, O. Reimann, D. Summerer, M. J. Schmidt, M. Helm, S. Kellner

  • Synthetic kiss of death: Chemical access to ubiquitinated proteins
  • Expansion of the genetic code
  • Mass spectrometry of modified nucleic acids

► Full article (in German):

All 2012 trend reports on ChemViews

Authors

Christian Hackenberger

Christian Hackenberger, born 1976, is in a working group whose focus lies on the development of new chemoselective processes for the recovery of modified functional proteins. He is coordinator of the Schwerpunktprogramms 1623 (Priority Program 1623) with this thematic focus (www.spp1623.de). At the end of 2012 he was appointed to the Leibniz Humboldt Professorship of Chemical Biology at the Leibniz Institute for Molecular Pharmacology (FMP) in Berlin and the Humboldt University Berlin, Germany.

 

Oliver Reimann

Oliver Reimann, born 1984, studied chemistry at the Freie University, Berlin, Germany, and received his Ph.D. from there in 2011 under the supervision of Christian Hackenberger. In his doctoral thesis, supported by the Fonds der Chemischen Industrie, he worked on post-translational variants of Alzheimer-related tau proteins.

 

Daniel Summerer

Daniel Summerer, born 1975, studied chemistry in Bonn, Germany, and gained his Ph.D. from there on the chemical biology of DNA polymerases. After postdoctoral research at the Scripps Research Institute, La Jolla, USA, where he worked in the group of Peter G. Schultz on the expansion of the genetic code, he worked in management positions in the biotech industry in Genomics and Next-Generation Sequencing in Heidelberg, Germany, and Boston, MA, USA. Since 2010 he has been Group Leader of the future program at the University of Konstanz, Germany.

His area of ​​research is in synthetic biology of functional protein-nucleic acid complexes.

 

Moritz Schmidt

Moritz J. Schmidt, born 1986, studied life sciences with emphasis on chemistry at the University of Konstanz, Germany. He gained his Ph.D. in 2012 under the supervision of Daniel Summerer as part of the fast track scholarship program of the Chemical Biology Research School, University of Konstanz.

His research interests are in the areas of expansion of the genetic code, RNA recognition, and evolutionary strategies of molecular design.

 

Mark HelmMark Helm, born 1969, has been a Professor of Pharmaceutical/Medicinal Chemistry at the University of Mainz, Germany, since 2009. He received his Ph.D. in 1999 in molecular biology at the University of Strasbourg, France, after which he undertook postdoctoral research at the California Institute of Technology, USA, and at the Freie Universität Berlin, Germany. After that, he became a Senior Research Scientist in the Department of Chemistry at the Institute of Pharmacy and Molecular Biotechnology of the University of Heidelberg, Germany, where he obtained his Habilitation in 2008 in the fields of pharmaceutical chemistry and biochemistry.

His research interests include ribonucleotide modification, the structural dynamics of RNA molecules, the uptake and intracellular distribution of siRNA, and RNA bioconjugates.

Stefanie Kellner

Stefanie Kellner, born 1984, studied pharmacy in Heidelberg, Germany. She subsequently joined the group of Mark Helm, University of Mainz, Germany, working on the functionalization and detection of RNA and its modifications.

Currently she is engaged in the mass spectrometric analysis and quantification of modified nucleic acids.

 

References

Ubiquitinated Proteins

1) A. Ciechanover, Angew. Chem. 2005, 117, 6095–6119. DOI: 10.1002/ange.200501428
2) A. Hershko, Angew. Chem. 2005, 117, 6082–6094. DOI: 10.1002/ange.200501724
3) I. Rose, Angew. Chem. 2005, 117, 6076–6081. DOI: 10.1002/ange.200500995
4) D. Hoeller, I. Dikic, Nature 2009, 458, 438–444. DOI: 10.1038/nature07960
5) C. Patterson, C. Ike, P. W. Willis IV, G. A. Stouffer, M. S. Willis, Circulation 2007, 115, 1456–1463. DOI: 10.1161/CIRCULATIONAHA.106.649863
6) H.-C. Tai, E. M. Schuman, Nat. Rev. Neurosci. 2008, 9, 826–838. DOI: 10.1038/nrn2499
7) L. Bedford, J. Lowe, L. R. Dick, R. J. Mayer, J. E. Brownell, Nat. Rev. Drug Discov. 2011, 10, 29–46. DOI: 10.1038/nrd3321
8) A. Bremm, S. M. Freund, D. Komander, Nat. Struct. Mol. Biol. 2010, 17, 939–947. DOI: 10.1038/nsmb.1873
9) H.-D. Arndt, C. P. R. Hackenberger, D. Schwarzer, Chem. Unserer Zeit 2010, 44, 130–137. DOI: 10.1002/ciuz.201000499
10) C. P. R. Hackenberger, D. Schwarzer, Angew. Chem. 2008, 120, 10182–10228. DOI: 10.1002/ange.200801313
11) R. K. McGinty, J. Kim, C. Chatterjee, R. G. Roeder, T. W. Muir, Nature 2008, 453, 812–816. DOI: 10.1038/nature06906
12) S. Virdee, Y. Ye, D. P. Nguyen, D. Komander, J. W. Chin, Nat. Chem. Biol. 2010, 6, 750–757. DOI: 10.1038/nchembio.426
13) M. Hejjaoui, M. Haj-Yahya, K. S. A. Kumar, A. Brik, H. A. Lashuel, Angew. Chem. 2011, 123, 425–429. DOI: 10.1002/ange.201005546
14) S. N. Bavikar, L. Spasser, M. Haj-Yahya, S. V. Karthikeyan, T. Moyal, K. S. A. Kumar, A. Brik, Angew. Chem. 2012, 124, 782–787. DOI: 10.1002/ange.201106430
15) S. Virdee, P. B. Kapadnis, T. Elliot, K. Lang, J. Madrzak, D. P. Nguyen, L. Riechmann, J. W. Chin, J. Am. Chem. Soc. 2011, 133, 10708–10711. DOI: 10.1021/ja202799r
16) L. Yin, B. Krantz, N. S. Russel, S. Desphande, K. D. Wilkinson, Biochemistry 2000, 39, 10001–10010. DOI: 10.1021/bi0007019
17) X. Li, T. Fekner, J. J. Ottesen, M. K. Chan, Angew. Chem. Int. Ed. 2009, 48, 9184–9187. DOI: 10.1002/anie.200904472
18) C. Chatterjee, R. K. McGinty, B. Fierz, T. W. Muir, Nat. Chem. Biol. 2010, 6, 267–269. DOI: 10.1038/nchembio.315
19) J. Chen, Y. Ai, J. Wang, L. Haracska, Z. Zhuang, Nat. Chem. Biol. 2010, 6, 270–272. DOI: 10.1038/nchembio.316
20) A. Shanmugham, A. Fish, M. P. A. Luna-Vargas, A. C. Faesen, F. El Oualid, T. K. Sixma, H. Ovaa, J. Am. Chem. Soc. 2010, 132, 8834–8835. DOI: 10.1021/ja101803s
21) N. D. Weikart, H. D. Mootz, ChemBioChem 2010, 11, 774–777. DOI: 10.1002/cbic.200900738
22) S. Sommer, N. D. Weikart, A. Brockmeyer, P. Janning, H. D. Mootz, Angew. Chem. 2011, 123, 10062–10066. DOI: 10.1002/ange.201102531
23) S. Eger, M. Scheffner, A. Marx, M. Rubini, J. Am. Chem. Soc. 2010, 132, 16337–16339. DOI: 10.1021/ja1072838
24) S. Eger, B. Castrec, U. Hübscher, M. Scheffner, M. Rubini, A. Marx, ChemBioChem 2011, 12, 2807–2812. DOI: 10.1002/cbic.201100444
25) M. Haj-Yaha, N. Eltarteer, S. Ohayon, E. Shema, E. Kotler, M. Oren, A. Brik, Angew. Chem. 2012, 124, 11703–11707. DOI: 10.1002/ange.201205771
26) E. M. Valkevich, R. G. Guenette, N. A. Sanchez, Y. Chen, Y. Ge, E. R. Strieter, J. Am. Chem. Soc. 2012, 134, 6916–6919. DOI: 10.1021/ja300500a
27) L. Spasser, A. Brik, Angew. Chem. 2012, 124, 6946–6969. DOI: 10.1002/ange.201200020
28) E. R. Strieter, D. A. Korasick, ACS Chem. Biol. 2012, 7, 52–63. DOI: 10.1021/cb2004059
29) Y. Kulathu, D. Kommander, Nat. Rev. Mol. Cell Biol. 2012, 13, 508–523. DOI: 10.1038/nrm3394

Expansion of the Genetic Code
1) a) C. C. Liu, P. G. Schultz, Ann. Rev. Biochem. 2010, 79, 413–444. DOI: 10.1146/annurev.biochem.052308.105824; b) L. Davis, J. W. Chin, Nat. Rev. Mol. Cell Biol. 2012, 13, 168–182. DOI: 10.1038/nrm3286
2) a) A. Deiters, T. A. Cropp, M. Mukherji, J. W. Chin, J. C. Anderson, P. G. Schultz, J. Am. Chem. Soc. 2003, 125, 11782–11783. DOI: 10.1021/ja0370037; b) J. W. Chin, S. W. Santoro, A. B. Martin, D. S. King, L. Wang, P. G. Schultz, J. Am. Chem. Soc. 2002, 124, 9026–9027. DOI: 10.1021/ja027007w; c) S. Virdee, P. B. Kapadnis, T. Elliott, K. Lang, J. Madrzak, D. P. Nguyen, L. Riechmann, J. W. Chin, J. Am. Chem. Soc. 2011, 133, 10708–10711. DOI: 10.1021/ja202799r
3) D. Summerer, S. Chen, N. Wu, A. Deiters, J. W. Chin, P. G. Schultz, Proc. Natl. Acad. Sci. USA 2006, 103, 9785–9789. DOI: 10.1073/pnas.0603965103
4) a) E. A. Lemke, D. Summerer, B. H. Geierstanger, S. M. Brittain, P. G. Schultz, Nat. Chem. Biol. 2007, 3, 769–772. DOI: 10.1038/nchembio.2007.44; b) A. Deiters, D. Groff, Y. Ryu, J. Xie, P. G. Schultz, Angew. Chem. 2006, 118, 2794–2797. DOI: 10.1002/ange.200600264; c) N. Wu, A. Deiters, T. A. Cropp, D. King, P. G. Schultz, J. Am. Chem. Soc. 2004, 126, 14306–14307. DOI: 10.1021/ja040175z
5) a) E. M. Tippmann, W. Liu, D. Summerer, A. V. Mack, P. G. Schultz, ChemBioChem 2007, 8, 2210–2214. DOI: 10.1002/cbic.200700460; b) J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang, P. G. Schultz, Science 2003, 301, 964–967. DOI: 10.1126/science.1084772
6) J. M. Xie, W. S. Liu, P. G. Schultz, Angew. Chem. 2007, 119, 9399–9402. DOI: 10.1002/ange.200703397
7) a) D. H. Jones, S. E. Cellitti, X. Hao, Q. Zhang, M. Jahnz, D. Summerer, P. G. Schultz, T. Uno, B. H. Geierstanger, J. Biomol. NMR 2010, 46, 89–100. DOI: 10.1007/s10858-009-9365-4; b) A. Deiters, B. H. Geierstanger, P. G. Schultz, ChemBioChem 2005, 6, 55–58. DOI: 10.1002/cbic.200400319
8) a) H. Neumann, J. L. Hazen, J. Weinstein, R. A. Mehl, J. W. Chin, J. Am. Chem. Soc. 2008, 130, 4028–4033. DOI: 10.1021/ja710100d; b) C. C. Liu, P. G. Schultz, Nat. Biotechnol. 2006, 24, 1436–1440. DOI: 10.1038/nbt1254; c) C. H. Kim, M. Kang, H. J. Kim, A. Chatterjee, P. G. Schultz, Angew. Chem. 2012, 124, 7358–7361. DOI: 10.1002/ange.201203349
9) O. Rackham, J. W. Chin, Nat. Chem. Biol. 2005, 1, 159–166. DOI: 10.1038/nchembio719
10) K. Wang, H. Neumann, S. Y. Peak-Chew, J. W. Chin, Nat. Biotechnol. 2007, 25, 770–777. DOI: 10.1038/nbt1314
11) H. Neumann, K. Wang, L. Davis, M. Garcia-Alai, J. W. Chin, Nature 2010, 464, 441–444. DOI: 10.1038/nature08817
12) a) D. B. F. Johnson, J. F. Xu, Z. X. Shen, J. K. Takimoto, M. D. Schultz, R. J. Schmitz, Z. Xiang, J. R. Ecker, S. P. Briggs, L. Wang, Nat. Chem. Biol. 2011, 7, 779–786. DOI: 10.1038/nchembio.657; b) D. B. Johnson, C. Wang, J. Xu, M. D. Schultz, R. J. Schmitz, J. R. Ecker, L. Wang, ACS Chem. Biol. 2012, 7, 1337–1344. DOI: 10.1021/cb300229q
13) a) K. Ohtake, A. Sato, T. Mukai, N. Hino, S. Yokoyama, K. Sakamoto, J. Bacteriol. 2012, 194, 2606–2613. DOI: 10.1128/JB.00195-12; b) T. Mukai, A. Hayashi, F. Iraha, A. Sato, K. Ohtake, S. Yokoyama, K. Sakamoto, Nucleic Acids Res. 2010, 38, 8188–8195. DOI: 10.1093/nar/gkq707
14) F. J. Isaacs, P. A. Carr, H. H. Wang, M. J. Lajoie, B. Sterling, L. Kraal, A. C. Tolonen, T. A. Gianoulis, D. B. Goodman, N. B. Reppas, C. J. Emig, D. Bang, S. J. Hwang, M. C. Jewett, J. M. Jacobson, G. M. Church, Science 2011, 333, 348–353. DOI: 10.1126/science.1205822
15) L. Wang, A. Brock, B. Herberich, P. G. Schultz, Science 2001, 292, 498–500. DOI: 10.1126/science.1060077
16) a) K. Sakamoto, A. Hayashi, A. Sakamoto, D. Kiga, H. Nakayama, A. Soma, T. Kobayashi, M. Kitabatake, K. Takio, K. Saito,
M. Shirouzu, I. Hirao, S. Yokoyama, Nucleic Acids Res. 2002, 30, 4692–4699. DOI: 10.1093/nar/gkf589; b) W. S. Liu, A. Brock, S. Chen, S. B. Chen, P. G. Schultz, Nat. Methods 2007, 4, 239–244. DOI: 10.1038/nmeth1016
17) T. S. Young, I. Ahmad, A. Brock, P. G. Schultz, Biochemistry 2009, 48, 2643–2653. DOI: 10.1021/bi802178k
18) F. Wang, S. Robbins, J. Guo, W. Shen, P. G. Schultz, PLoS One 2010, 5, e9354. DOI: 10.1371/journal.pone.0009354
19) a) S. Greiss, J. W. Chin, J. Am. Chem. Soc. 2011, 133, 14196–14199. DOI: 10.1021/ja2054034; b) A. R. Parrish, X. She, Z. Xiang, I. Coin, Z. Shen, S. P. Briggs, A. Dillin, L. Wang, ACS Chem. Biol. 2012, 7, 1292–1302. DOI: 10.1021/cb200542j
20) A. Bianco, F. M. Townsley, S. Greiss, K. Lang, J. W. Chin, Nat. Chem. Biol. 2012, 8, 748–750. DOI: 10.1038/nchembio.1043
21) J. W. Chin, A. B. Martin, D. S. King, L. Wang, P. G. Schultz, Proc. Natl. Acad. Sci. USA 2002, 99, 11020–11024. DOI: 10.1073/pnas.172226299
22) a) M. J. Schmidt, D. Summerer, ChemBioChem 2012, 13, 1553–1557. DOI: 10.1002/cbic.201200321; b) T. Plass, S. Milles, C. Koehler, C. Schultz, E. A. Lemke, Angew. Chem. 2011, 123, 3964–3967. DOI: 10.1002/ange.201008178; c) T. Plass, S. Milles, C. Koehler, J. Szymanski, R. Mueller, M. Wiessler, C. Schultz, E. A. Lemke, Angew. Chem. 2012, 124, 4242–4246. DOI: 10.1002/ange.201108231; d) E. Kaya, M. Vrabel, C. Deiml, S. Prill, V. S. Fluxa, T. Carell, Angew. Chem. 2012, 124, 4542–4545. DOI: 10.1002/ange.201109252; e) K. Lang, L. Davis, J. Torres-Kolbus, C. Chou, A. Deiters, J. W. Chin, Nat. Chem. 2012, 4, 298–304. DOI: 10.1038/nchem.1250
23) T. Fekner, M. K. Chan, Curr. Opin. Chem. Biol. 2011, 15, 387–391. DOI: 10.1016/j.cbpa.2011.03.007
24) a) Y. S. Wang, X. Fang, H. Y. Chen, B. Wu, Z. U. Wang, C. Hilty, W. R. Liu, ACS Chem. Biol. 2012. DOI: 10.1021/cb300512r; b) Y. S. Wang, X. Q. Fang, A. L. Wallace, B. Wu, W. S. R. Liu, J. Am. Chem. Soc. 2012, 134, 2950–2953. DOI: 10.1021/ja211972x
25) a) M. A. Gaston, L. Zhang, K. B. Green-Church, J. A. Krzycki, Nature 2011, 471, 647–650. DOI: 10.1038/nature09918; b) S. E. Cellitti, W. Ou, H. P. Chiu, J. Grunewald, D. H. Jones, X. Hao, Q. Fan, L. L. Quinn, K. Ng, A. T. Anfora, S. A. Lesley, T. Uno, A. Brock, B. H. Geierstanger, Nat. Chem. Biol. 2011, 7, 528–530. DOI: 10.1038/nchembio.586
26) F. Quitterer, A. List, W. Eisenreich, A. Bacher, M. Groll, Angew. Chem. 2012, 124, 1367–1370. DOI: 10.1002/ange.201106765
27) F. Quitterer, A. List, P. Beck, A. Bacher, M. Groll, J. Mol. Biol. 2012, 424, 270–282. DOI: 10.1016/j.jmb.2012.09.007
28) W. Ou, T. Uno, H. P. Chiu, J. Grunewald, S. E. Cellitti, T. Crossgrove, X. Hao, Q. Fan, L. L. Quinn, P. Patterson, L. Okach, D. H. Jones, S. A. Lesley, A. Brock, B. H. Geierstanger, Proc. Natl. Acad. Sci. USA 2011, 108, 10437–10442. DOI: 10.1073/pnas.1105197108
29) C. C. Liu, A. V. Mack, M. L. Tsao, J. H. Mills, H. S. Lee, H. Choe, M. Farzan, P. G. Schultz, V. V. Smider, Proc. Natl. Acad. Sci. USA 2008, 105, 17688–17693. DOI: 10.1073/pnas.0809543105
30) C. C. Liu, A. V. Mack, E. M. Brustad, J. H. Mills, D. Groff, V. V. Smider, P. G. Schultz, J. Am. Chem. Soc. 2009, 131, 9616–9617. DOI: 10.1021/ja902985e
31) T. S. Young, D. D. Young, I. Ahmad, J. M. Louis, S. J. Benkovic, P. G. Schultz, Proc. Natl. Acad. Sci. USA 2011, 108, 11052–11056. DOI: 10.1073/pnas.1108045108

Mass Spectrometry of Modified Nucleic Acids

1) G. R. Wyatt, Nature 1950, 166, 237. DOI: 10.1038/166237b0
2) a) M. A. Machnicka, K. Milanowska, O. Osman Oglou, E. Purta, M. Kurkowska, A. Olchowik, W. Januszewski, S. Kalinowski,
S. Dunin-Horkawicz, K. M. Rother, M. Helm, J. M. Bujnicki, H. Grosjean, Nucl. Acids Res. 2013, 41(D1), D262–D267. DOI: 10.1093/nar/gks1007; b) T. Carell, C. Brandmayr, A. Hienzsch, M. Muller, D. Pearson, V. Reiter, I. Thoma, P. Thumbs, M. Wagner, Angew. Chem. 2012, 124, 7220. DOI: 10.1002/ange.201201193
3) S. Schiesser, B. Hackner, T. Pfaffeneder, M. Muller, C. Hagemeier, M. Truss, T. Carell, Angew. Chem. 2012, 124, 6622. DOI: 10.1002/ange.201202583
4) C. Höbartner, Nachr. Chem. 2012, 60, 308. DOI: 10.1002/nadc.201290120
5) G. Jia, Y. Fu, X. Zhao, Q. Dai, G. Zheng, Y. Yang, C. Yi, T. Lindahl, T. Pan, Y. G. Yang, C. He, Nat. Chem. Biol. 2011, 7, 885. DOI: 10.1038/nchembio.687
6) a) K. D. Meyer, Y. Saletore, P. Zumbo, O. Elemento, C. E. Mason, S. R. Jaffrey, Cell 2012, 149, 1635. DOI: 10.1016/j.cell.2012.05.003; b) D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, M. Salmon-Divon, L. Ungar, S. Osenberg, K. Cesarkas, J. Jacob-Hirsch, N. Amariglio, M. Kupiec, R. Sorek, G. Rechavi, Nature 2012, 485, 201. DOI: 10.1038/nature11112
7) Y. Saletore, K. Meyer, J. Korlach, I. D. Vilfan, S. Jaffrey, C. E. Mason, Genome Biol. 2012, 13, 175. DOI: 10.1186/gb-2012-13-10-175
8) M. Helm, M. Morl, P. F. Stadler, S. Hoffmann, Nachr. Chem. 2012, 60, 300. DOI: 10.1002/nadc.201290120
9) C. Wetzel, P. A. Limbach, J. Proteomics 2012, 75, 3450. DOI: 10.1016/j.jprot.2011.09.015
10) G. E. Davis, R. D. Suits, K. C. Kuo, C. W. Gehrke, T. P. Waalkes, E. Borek, Clin. Chem. 1977, 23, 1427. Link
11) S. C. Pomerantz, J. A. McCloskey, Methods Enzymol. 1990, 193, 796. DOI: 10.1016/0076-6879(90)93452-Q
12) D. Globisch, D. Pearson, A. Hienzsch, T. Bruckl, M. Wagner, I. Thoma, P. Thumbs, V. Reiter, A. C. Kneuttinger, M. Muller, S. A. Sieber, T. Carell, Angew. Chem. 2011, 123, 9913. DOI: 10.1002/ange.201103229
13) C. Brandmayr, M. Wagner, T. Bruckl, D. Globisch, D. Pearson, A. C. Kneuttinger, V. Reiter, A. Hienzsch, S. Koch, I. Thoma, P. Thumbs, S. Michalakis, M. Muller, M. Biel, T. Carell, Angew. Chem. 2012, 124, 11324. DOI: 10.1002/ange.201203769
14) a) A. Patil, M. Dyavaiah, F. Joseph, J. P. Rooney, C. T. Chan, P. C. Dedon, T. J. Begley, Cell Cycle 2012, 11, 3656. DOI: 10.4161/cc.21919; b) C. T. Chan, Y. L. Pang, W. Deng, I. R. Babu, M. Dyavaiah, T. J. Begley, P. C. Dedon, Nat. Commun. 2012, 3, 937. DOI: 10.1038/ncomms1938
15) F. Tuorto, R. Liebers, T. Musch, M. Schaefer, S. Hofmann, S. Kellner, M. Frye, M. Helm, G. Stoecklin, F. Lyko, Nat. Struct. Mol. Biol. 2012, 19, 900. DOI: 10.1038/nsmb.2357
16) C. E. Dumelin, Y. Chen, A. M. Leconte, Y. G. Chen, D. R. Liu, Nat. Chem. Biol. 2012, 8, 913. DOI: 10.1038/nchembio.1070
17) S. Li, P. A. Limbach, Anal. Chem. 2012, 84, 8607. DOI: 10.1021/ac301638c
18) M. Taucher, B. Ganisl, K. Breuker, Int. J. Mass Spectrom. 2011, 304, 91. DOI: 10.1016/j.ijms.2010.05.024
19) M. Taucher, K. Breuker, Angew. Chem. 2012, 124, 11451. DOI: 10.1002/ange.201206232

Leave a Reply

Your email address will not be published.