Nanoparticles Replace Needle and Thread

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 25 April 2014
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Nanoparticles Replace Needle and Thread

Related Articles

Wound Repair

Stopping bleeding, closing wounds, repairing organs—these are everyday challenges in medical and surgical practice. In the journal Angewandte Chemie, French researchers have now introduced a new method that employs gluing by aqueous nanoparticle solutions to effectively control bleeding and repair tissues. In animal tests, their approach proved easy to apply, rapid and efficient even in situations when conventional methods are traumatic or fail.


Sutures and staples are efficient tools for use in surgery and treating wounds. However, the usefulness of these methods can be limited in inaccessible parts of the body or in minimally invasive surgeries. In addition, stitching damages soft tissues such as liver, spleen, kidney, or lung. A good adhesive could be a useful alternative. The problem is that the adhesion must take place in a wet environment and that the repaired area is immediately put under strain. Previous adhesive technologies have had problems, including insufficient strength, inflammation due to toxic substances, or complicated implementation because a chemical polymerization or cross-linking reaction must be carried out in a controlled manner.



A Nanoparticle Solution

A team headed by Ludwik Leibler, Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech), France, and Didier Letourneur, Laboratoire Recherche Vasculaire Translationnelle (INSERM/Université Paris Diderot), France, has now successfully tested a completely novel approach for adhering living tissue: they simply apply droplets of a nanoparticle solution to the wound and press it closed for about a minute. The principle behind is stunningly simple: the nanoparticles spread out across the surface and bind to the tissue’s molecular network by attracting interactions. Because there are a very large number of nanoparticles present, millions of bonds firmly bind the two surfaces together. No chemical reaction is needed. The researchers used silicon dioxide and iron oxide nanoparticles for their experiments.


In contrast to conventional wound adhesives, this results in no artificial barrier; it produces direct contact between the two edges of the wound. Because the nanoparticles are so small, they do not appreciably impact the wound healing process. Applied to deep skin wounds the method is easily usable and leads to remarkably aesthetic healing. In addition, it is possible to correct the positioning of the tissue edges relative to each other without opening the wound closure.


Aqueous solutions of nanoparticles have been also shown to be able to repair rapidly and efficiently in hemorrhagic conditions liver wounds for which sutures are traumatic and not practical. Either a wound was closed and wound edges were glued by nanoparticles or, in the case of liver resections, bleeding was quickly stopped by gluing a polymer strip using a nanoparticle solution.


In addition, the researchers were able to attach a biodegradable membrane to a beating rat heart. This opens new perspectives: it may be possible to attach medical devices for delivering drugs, supporting damaged tissue, as well as matrices for tissue growth.


Article Views: 4185

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH