Stabilized Versions of the SARS-CoV-2 Spike Protein

  • Author:
  • Published: 30 July 2020
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Science/American Association for the Advancement of Science
thumbnail image: Stabilized Versions of the SARS-CoV-2 Spike Protein

Coronaviruses, e.g., SARS-CoV-2 which causes the current COVID-19 pandemic, have glycoprotein "spikes" on their surface. These spikes help the virus to enter host cells by fusing the virus with cell membranes. The SARS-CoV-2 spike binds to a receptor on the surface of the host cells' membrane—the angiotensin-converting enzyme 2 (ACE2). When it binds, the spike's confirmation rearranges from a metastable prefusion structure to a stable postfusion structure.

The prefusion structure could be a target for the development of COVID-19 vaccines and treatments. However, this conformation of the protein is difficult to produce by recombinant expression, i.e., using cells that have been modified with foreign DNA. SARS-CoV-2 spike proteins that are stabilized in their prefusion configuration would, thus, be useful to improve protein yields.

Jennifer A. Maynard, Ilya J. Finkelstein, Jason S. McLellan, and colleagues, University of Texas, Austin, USA, have designed modified versions of the SARS-CoV-2 spike protein to find more stable variants that can be expressed at higher levels. The team analyzed the cryogenic electron microscopy (cryo-EM) structure of the spike protein and chose substitutions that should make the structure more stable, such as additional disulfide bonds, salt bridges, proline residues, and hydrophobic residues that can fill internal cavities. The team obtained 100 variants, each changed in a single position, and tested their expression in FreeStyle 293-F cells.

The researchers found that 26 of these single substitutions led to improved protein yields. Then they combined the best-performing substitutions to further optimize the stability and expression of the protein. They found that a variant with six proline substitutions, which they call HexaPro, is particularly promising. It has almost ten-fold higher expression than the parent spike protein, as well as increased thermostability. The researchers determined the cryo-EM structure of HexaPro (pictured) with a resolution of 3.2 Å and found that it retains the prefusion spike conformation.

  • Structure-based design of prefusion-stabilized SARS-CoV-2 spikes,
    Ching-Lin Hsieh, Jory A. Goldsmith, Jeffrey M. Schaub, Andrea M. DiVenere, Hung-Che Kuo, Kamyab Javanmardi, Kevin C. Le, Daniel Wrapp, Alison G. Lee, Yutong Liu, Chia-Wei Chou, Patrick O. Byrne, Christy K. Hjorth, Nicole V. Johnson, John Ludes-Meyers, Annalee W. Nguyen, Juyeon Park, Nianshuang Wang, Dzifa Amengor, Jason J. Lavinder, Gregory C. Ippolito, Jennifer A. Maynard, Ilya J. Finkelstein, Jason S. McLellan,
    Science 2020.

Also of Interest

  • Collection: SARS-CoV-2 Virus
    What we know about the new coronavirus and COVID-19
  • LitCovid
    Curated literature hub for tracking up-to-date scientific information about COVID-19
  • Many publishers and other entities have signed a joint statement to ensure that COVID-19 research findings and data are shared rapidly and openly



Article Views: 3189

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH