A Fluorescent σ-Aromatic Tetraborane(4)

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 21 February 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: A Fluorescent σ-Aromatic Tetraborane(4)

The well-known cyclobutane molecule (C4H8) contains four carbon atoms connected by four two-center two-electron (2c,2e) bonds. It has a total of eight skeletal electrons. The compound becomes electron-deficient when electrons are removed from the four bonds. If several electrons are removed, the covalent bond energy no longer compensates the electrostatic repulsion in the cation and the compound decomposes.


Hans-Jörg Himmel and colleagues, University of Heidelberg, Germany, have synthesized an unprecedented base-stabilized σ‐aromatic tetraborane(4) tetracation. The compound (pictured) was prepared from the dihydridodiborane [HB(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) by hydride abstraction.


The product has a rhomboid-type B4 skeleton and only four skeletal electrons, i.e., it can be considered a [B4H4]4+ analogue. It is isoelectronic with the unstable cyclobutane tetracation, yet is stable itself. Within the structure, electrostatic repulsion is reduced by delocalization of the high positive charge into four bicyclic guanidinate groups.


The bright-orange salts of the new σ-aromatic tetraborane are fluorescent, with a maximum fluorescence signal at 580 nm. The researchers believe such electron-deficient rings could be integrated into larger molecular architectures for use in optoelectronic applications.


 

Article Views: 531

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH