High-Yielding Synthesis of Antiviral Drug Candidate

  • Author: European Journal of Organic Chemistry
  • Published Date: 19 November 2020
  • Copyright: Wiley-VCH GmbH
thumbnail image: High-Yielding Synthesis of Antiviral Drug Candidate

Related Societies

The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2. Drugs for the treatment of this disease are urgently needed. The antiviral compound EIDD-2801 (molnupiravir, pictured above) has been identified as a potential drug candidate against COVID-19 and is currently in phase II clinical trials. The existing route for its synthesis, however, gives EIDD-2801 from uridine in a rather low yield of 17 %.


C. Oliver Kappe, Doris Dallinger, University of Graz, Austria, and colleagues have developed an improved synthesis of EIDD-2801 from uridine (pictured below) by strategically reordering the synthetic steps. The reaction sequence starts with the activation of uridine with 1,2,4-triazole and continues with a telescoped acetonide protection/esterification and a telescoped hydroxyamination/acetonide deprotection. Telescoped reaction sequences consist of two or more than one one-pot procedures that are performed back-to-back without a work-up step in-between. A continuous flow process was used for the final acetonide deprotection, which improved selectivity and reproducibility.

 


Compared to the original route, the yield of EIDD-2801 was improved to 61 %. This strategy also requires fewer isolation steps because of the two telescoped procedures (acetonide protection/esterification and hydroxyamination/acetonide deprotection) included within the five‐step route.


 

Also of Interest

News: Coronavirus Drug Molnupiravir

  • 05 October 2021

Molnupiravir significantly reduces risk of hospitalization and/or death, according to Merck

thumbnail image: Coronavirus Drug Molnupiravir

News: Improved Synthesis Route for Molnupiravir

  • 04 August 2021

Efficient synthesis from cheap and easily available cytidine

thumbnail image: Improved Synthesis Route for Molnupiravir

Research Highlight: How Molnupiravir Causes SARS-CoV-2 to Mutate and Die

  • 07 September 2021
  • Author: Roswitha HarrerORCID iD

Mechanism might apply to various viral polymerases and could explain broad-spectrum antiviral activity of molnupiravir

thumbnail image: How Molnupiravir Causes SARS-CoV-2 to Mutate and Die

News: High-Yielding Synthesis of Antiviral Drug Candidate

  • 19 November 2020

Improved preparation of EIDD‐2801, currently in clinical trials for COVID-19 treatment

thumbnail image: High-Yielding Synthesis of Antiviral Drug Candidate

News: Oral Drug Blocks SARS-CoV-2 Transmission in Ferrets

  • 09 December 2020

Repurposed ribonucleoside analogue inhibitor of influenza viruses

thumbnail image: Oral Drug Blocks SARS-CoV-2 Transmission in Ferrets

 

 

 

Article Views: 7112

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH